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Assimilating microwave satellite observations over the vortex —
from TMI to microwave sounders and radar scatterometry
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Z.S. Haddad, J. Steward, S. Kacimi, S. Hristova-Veleva, T. Vukicevic

1) developed an observation operator for TRMM-TMI (~ AMSR) into AOML/
HRD’s HEDAS system — main issues: TMI (now GMI) does not observe very
frequently in time (see 3 below) ... so why TMI?

2) developing a representation of Megha-Tropiques SAPHIR obs, AMSU-B -
main challenge: representing the scattering from hydrometeors at these high
frequencies

3) use of hyperspectral IR (AIRS)

4) developing an approach for more systematic assimilation of scatterometer
(RAPIDSCAT) observations — main challenge: covariance localization



Why TMI?

Mainly

because

itis
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Hurricane Earl on 31 August 2010 at 0600Z
HWRF sim



Why is it necessary to do something different to obtain an
observation operator in the case of microwave obs?

Because variational DA tries to minimize
S t S
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where F(x, A) is meant to be the mean value of the obs associated with
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Why is it necessary to do something different to obtain an
observation operator in the case of microwave obs?

Because variational DA tries to minimize

R t
(F—5) B (@ -a5) + (0-F(@@N) R (0-F@ )
F(x, M) is quite different for clear-sky radiances:

oo oo

F ~ Tge Jo Feat(@) 4 / kewt (Z)T(R) e Jn Fext (@ gp,
0

is essentially an increasing function of x
(more water vapor = warmer brightness temperature)



Brightness temperatures for HWRF simulation of Hurricane Earl on 31 August 2010 at 0600Z,
calculated using CRTM with the default microphysical parameter values.



Brightness temperatures for HWRF simulation of Hurricane Earl on 31 August 2010 at 0600Z,
calculated using CRTM with adjusted microphysical parameter values:
rain drops smaller by 44%, smaller graupel that is half as dense



We developed a method to quickly calculate the mean brightness
temperatures associated to a given atmospheric state vector,
without having to perturb around the nominal value of every
variable in x and every parameter in A:

Start with HWRF simulations (say Hepas earl 2010 havk, 2010-08-29-127 to 2010-09-03-187),
using stream 1, potential %, P, T, RH, W, Ocligr Ar» Geiir Asr Agr A,

at 12 vertical levels for a total of 504 variables x,, ... , X<,

for each of these 12million columns, forward-calculate T, , ..., T,q

Step 1: find the principal components x.’, ..., X,
find the principal components

Step 3: find the top 3 combos of x’,..., Xc,,” that correlate best with
the corresponding 3 combos of (requires diagonalization)

” ” 7 V24 ” V24
and express T,”, T,”, T;” in terms of x,”, x,”, X5
(with differentiable expression, in order to compute derivatives)



CRTM > RTTOV CRTM > RTTOV




Top row: Brightness temperatures
calculated using our operator for
the ensemble mean of our HEDAS
forecast of Hurricane Earl for
0430Z on 31 August 2010.

Second row: Actual TMI
observations at 04397.
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:: Third row: Brightness

.. temperatures calculated using

» our operator for the analyzed
variables at 0430Z (post-
assimilation).

Fourth row: Brightness
temperatures calculated for the
ensemble forecast at 0530Z
starting with the analysis at 0430Z.




192 W 0.46

1.28 ¥ N 0.14
o096 2w - » Ay g 0,02

064 s 0.18
= Z
. 7 %,
032 o Mo
0w _.,'.‘ ‘B 05
g/Kg ", i ‘ . 9/Kg

nw L L sa'w Q2w nww 68w es'w Baw oW now L as'w Baw aw YW @aw @aw W arw

Vertically-averaged condensed-water-mass mixing ratios, from the ensemble mean before
the assimilation (left panel) and after the assimilation (center left panel), as well as after a
different assimilation where we divided the observation covariance matrix by 4 to increase
the impact of the TMI observations (center right panel). The rightmost panel shows the
adjustment to the vertically-averaged condensed water mass, with the three grid points
selected for vertical examination highlighted.
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Track without TMI assimilation (left) and with (right)
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How bad is GMI temporal sampling? i At

November+December 2011 (because of Saplw
TC Thane (BoB, 25-30 Dec), seen 4 times:

26@13:04, 27@12:09,

27@21:59 ,and 29@11:53




How bad is GMI resolution?

TRMM / TMI at 350 km

10.65

GPM / GMI at 407 km
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How to remedy poor MADRAS resolution?
hi-frequency+hi-resolution-guided deconvolution:

(Tb — A f)tE_l(Tb — A f) + (f — T(Th¢F+hiR))t0_1(f — T(ThiF+hiR))
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How to remedy poor MADRAS resolution?
hi-frequency+hi-resolution-guided deconvolution:

(Tb — A f)tE_l(Tb — A f) + (f — T(Thip_}_hiR))tO_l(f — T(ThiF+hiR))
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How to remedy poor MADRAS resolution?
hi-frequency+hi-resolution-guided deconvolution:
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How to remedy poor MADRAS resolution?
hi-frequency+hi-resolution-guided deconvolution:

= 7(Thirsnir) + 1 + CA'E"Y A1 CA'E~
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Alternative: Sounders -- yes, sounders have better resolution,
but difficult to interpret over condensation:
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Alternative: Sounders -- yes, sounders have better resolution,
but difficult to interpret over condensation:
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First, detect detector = lin_discr(T,, ..., T;)
(i.e. classify |

precip vs
non-precip) =y
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SAPHIR 1Dvar (retrieval) of
condensed water mass:
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Sounders sensitive to water vapor, of course:
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Can AIRS help with water vapor?

we are studying the
sensitivity of AIRS, using 15}
2 days’ worth of

forward calculations
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Can AIRS help with water vapor?

Column water cloud

we are studying the
sensitivity of AIRS, using 15}
2 days’ worth of

forward calculations
from ECMWEF simulation: 10}

Not a detector
of liquid condensation!
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Can AIRS help with water vapor?

we are studying the

sensitivity of AIRS, using 15}

2 days’ worth of
forward calculations

from ECMWEF simulation: 19}

Not a detector
of solid condensation!
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Can AIRS help with water vapor?
Total column water vapor

we are studying the
sensitivity of AIRS, using 15}
2 days’ worth of

forward calculations
from ECMWEF simulation:
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New, different use of “data assimilation”:

let’s not leave info on the table:
precip measurements can be used to analyze instantaneous state
(final in 3Dvar / EnKF, or initial/intermediate in 4Dvar)

but they also tell about the process,

so we should try to use them to improve model,

improve model parametrizations,

improve parameters or parameter correlations in parametrizations

... still just a rough idea, but Kalnay has been thinking the same ...



Applied the same approach to represent scatterometer observations
as functions of wind (speed and inflow angle) at every vertical level:

CCV #1 (HWRF-global), R2: 91.5155% CCV #2 (HWRF-global), R2: 78.9602%
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Unfortunately, background covariance representation problematic:
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Applied the same approach to represent scatterometer observations
and tested on Earl:

HEDAS Earl forecasts without (left) / without (right) assimilation of OSCAT with our Robust-NL
observation operator (best track estimate at 31 AUG 06Z: 115kts; at 02 SEP 06Z: 125kts)

No assimilation: » OSCAT assimilated:
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Plan:

1) test observation operator for SAPHIR, develop version for AMSU-B
2) test for dependence on ice signatures

3) test for bias by specific humidity, and ability to reduce

(eliminate?) bias using AIRS

4) implement systematic assimilation of RAPIDSCAT for the
upcoming season using our operator, then evaluate ...



