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Abstract 

 
Spatial recursive filters and the Hexad algorithm are used to implement four different models of anisotropic 
background error covariances within the NCEP Eta 3DVAR system.  The covariance models are based on the 
Riishøjgaard method, the semigeostrophic and semigeostrophic-isentropic transformation methods, and the 
so-called kinematic deformation method. Each formulation uses background state diagnostics to define a 
distinct local aspect tensor of the assumed Gaussian correlation models.  The forecast impacts of the various 
formulations are evaluated from simulations of a 2004 late winter storm over the continental U.S. All four 
covariance models used in the case study are found to have a significant, positive impact on the forecast skill 
measured in terms of the mean-squared errors of the 500 hPa geopotential height and the precipitation 
equitable threat scores. 
 
1. Introduction 
 
The assumed covariance model for the background errors is a crucial component of any three-dimensional 
variational (3DVar) scheme that assimilates data to initialize a weather prediction model (Daley 1991). 
Traditionally, the covariance model in an operational 3DVar scheme has been rather simple in its spatial 
structure, being horizontally isotropic and homogeneous for each of the separated scalar components into 
which the full dynamical fields are typically resolved. The balanced (quasi-geostrophic) component, having 
more energy in its modes and in the errors of these modes (as measured by an energy norm), naturally has 
covariance with the dominant amplitudes, while the errors of the unbalanced divergent and rotational 
components are normally considered to be of a lesser amplitude and significance.  However, as we migrate to 
progressively finer scales in our forecast models and their assimilation systems, it becomes less excusable to 
ignore strong horizontal anisotropies and vertically tilted meteorological structures that typify fronts, rainbands, 
and quasi-linear features of organized convection. Directional dependencies in the errors of the background 
are intuitively expected to mirror the horizontal and vertical stretching of the mesoscale features themselves to 
some degree, so the assumption that simple horizontally isotropic and untilted covariances will suffice seems 
less easy to justify. 
  
In this study, preliminary results of the impact of various covariance shapes on the analysis and forecast within 
the NCEP Eta 3DVar system are presented. The covariances possess a quasi-Gaussian form and are 
synthesized with the help of spatial recursive filters (Purser et al. 2003a). The sequential line-filtering Hexad 
algorithm (Purser et al. 2003b, Purser 2005), which is used with these filters, allows for the implementation of 
any arbitrary anisotropy, as prescribed by the centered and normalized second-moment aspect tensor of 
spatial dispersion, provided it is a sufficiently smooth function of space. Using the Riishøjgaard method (1998), 
the semigeostrophic and semigeostrophic-isentropic transformation methods (Desroziers, 1997), and the 
kinematic deformation method, the covariance shapes are prescribed as functionals of the background fields 
of Ertel potential vorticity, wind, and temperature under the assumption that the latent dynamical information 
these fields carry contains valuable information about the error correlations.  
 
 
2. The Riishøjgaard Method 
 
The current Gaussian horizontally isotropic model in use at NCEP can be expressed as: 
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where Δx is the local three-dimensional Cartesian vector of separation between particle pairs. The inverse 
aspect tensor is the diagonal matrix: 
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where Lh is the horizontal correlation length, Lv the vertical correlation length, and both may be considered 
functions of latitude and altitude.  
 
Riishøjgaard (1998) suggests that a passively advected field would constitute a valuable indication of the 
recent flow distortions that have played a part in stretching the error covariances. For a chosen scalar function, 
q, assumed to be evolving predominantly under the influence of advection, the Riishøjgaard method preserves 
the assumed Gaussian model (1), while modifying the default aspect tensor (2) according to: 
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Lq, which has the same units as q, represents  a correlation scale in the “direction” of variations of q. Examples 
of a suitable choice for q might be the background humidity, potential temperature, or in order to respond more 
directly to dynamics, a standard form of potential vorticity (PV).  For the case of Ertel PV, Fig.1 contours the 
covariance structure associated with a test point located near a region of strong PV gradient. As expected from 
the functional dependency expressed by (3), the contour lines of the covariance function tend to follow the 
isolines of the background PV. 
 
 
3. Adaptation of the semigeostrophic transformation method of Desroziers 
 
Following Desroziers (1997), we apply the following horizontal coordinate transformation of the 
semigeostrophic theory of Hoskins and Bretherton (1972), and Hoskins (1975):  
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where f is the Coriolis parameter, (ug,vg) the geostrophic wind, and x = (x,y) and xg = (xg,yg) are horizontal 
coordinates in real space and geostrophic-momentum space, respectively. Our computational approach, 
however, differs from that of Desroziers, who computes the complete set of coordinates in real space 
corresponding to the grid points of the transformed space. Instead, we opt for deriving the appropriate 2 x 2 
aspect tensor of the real space, S, that corresponds to the assumed spatially isotropic aspect tensor of the 
geostrophic-momentum space, Sg. It is rather straightforward to show that under the assumed Gaussian 
covariance models these aspect tensors are related as: 
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Fig.1: Riishøjgaard method:  Dark contours represent the auto-correlation function for temperature on the y-z plane for a 
test point marked by the dot. Outermost contour value is 0.1 and contour interval is 0.2. Light contours represent 
background Ertel PV at 0.5 PVU contour interval (1PVU= 10-6 K kg-1 m2 s-1). Dark dashed contour marks the 1PVU line. 

 
is the Jacobian matrix of the transformation. For simplicity, our calculations use the actual wind in place of the 
geostrophic wind, which explains why the subscript “g” was dropped from the wind components in (6). Since 
the vertical coordinate of the geostrophic-momentum space coincides with that of the real space, then for the 
full 3 x 3 aspect tensor: (S-1)13 = (S-1)31 = (S-1)23 = (S-1)32 = 0 and .  2

33
1 )( −− = vLS

 
 
 

Fig.2: The same as in figure 1, except for the semigeostrophic transformation method, and light contours are now 
background absolute vorticity normalized by the Coriolis parameter. 
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Figure 2 illustrates the covariance shape for a test point in the vicinity of a strong gradient of background 
absolute vorticity due to the presence of an intense cyclone and accompanying cold front.  It is apparent that 
unlike for the trivial case of the isotropic covariance shape, the isolines in this case tend to be stretched along 
the frontal boundary. 
 
A natural generalization of the semigeostrophic equations to three dimensions is accomplished by using the 
isentropic surfaces (Hoskins and Draghici 1977) as the vertical transformed coordinate. Following Hoskins and 
Bretherton (1972), we define an effective physical height (actually a form of the Exner function of pressure):  
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where the constant z0 is a vertical scale height and here z0 = 28000m.  The new Jacobian matrix generalizing 
(6) is 
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in which the quantity N with N2 = (g/θ)∂θ/∂z approximates the Brunt-Väisälä frequency, and No is a reference 
standard value of N, which may be a function of height. The subscript “i” in xgi   stands for “isentropic.” 
 
 
4. Covariance based on kinematic deformation at finite time lag 
 
In this construction, the assumption is that the actual covariance is the result of kinematic deformation over a 
finite time acting upon a passively evolving covariance that was initially horizontally isotropic and homogenous. 
For reasons of practicality, we make some additional simplifying assumptions. For example, the present local 
instantaneous deformation, F = (∂v/∂x), where v is the velocity field, is assumed to be constant on the 
material parcel for the entire duration, T. For convenience, we evaluate the deformation F from the velocity 
field at the actual time. The effect of F in evolving an infinitesimal material displacement, Δx, is described by 
the integrable equation,  
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The cumulative effect upon a displacement that at time t = 0 is at Δx(0), is:  
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Assuming Gaussian models of covariance and taking (10) into consideration, the following relationship can be 
derived between the actual aspect tensor S and the undeformed standard horizontally isotropic aspect tensor 
S-T at time t = -T: 
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Based on the same synoptic situation and test point as in Fig.2, Fig.3 shows the covariance of the kinematic 
deformation method for T = 6h. One sees that just as in Fig.2, the resulting covariance is confined to one side 
of the frontal system. Its shape, however, differs from that of Fig.2. 
 
 
5. Results 
 
5.1 Synoptic situation and methodology  
 
The synoptic situation features a storm system with an associated cold front that moved from the Southwest 
United States into New Mexico and Texas on 4 March 2004.  By 5 March 2004, a well developed cyclone was 
positioned over Eastern Iowa. Heavy rainfall and damaging winds were associated with the passage of this 
system as it progressed eastward through the Midwest and into the Appalachians.  
 
The initial time in our case study is 12Z on 5 March 2004, from which a 12-hour assimilation cycle is run 
followed by a 72-hour free forecast.  All computations are performed using the NCEP Eta 3DVar and forecast 
model. The horizontal resolution of the system is 12km with 60 vertical levels.  The 12 hour assimilation cycle 
is broken into four pieces:  a 3DVar analysis with a subsequent 3 hour forecast which, in turn, provides the 
background fields for the next analysis.  The assimilation cycle and free forecast are run for each of the 
covariance models discussed above.  The control run consists of a system using the horizontal, isotropic 
covariance model of equations (1) and (2). 
 
 

 
 
Fig.3: Same as in figure 2, except the auto-correlation function is calculated via the kinematic deformation method with 
T=6h. 
 
Our forecast verification is based on the mean-squared errors for the 500 hPa geopotential height and the 24h 
accumulated rainfall. For each free forecast, we compute a skill score relative to the control forecast, which is 
defined as follows: 
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MSE(t) and MSEcontrol(t) are the mean-squared errors of the 500 hPa geopotentail height for the experimental 
and the control forecast, respectively, and are evaluated with respect to the operational analysis (see Wilks, 
1995). Here, “t” denotes the forecast time. Positive (negative) values of the SS indicate improved (degraded) 
forecasts with respect to the control, which is characterized by SS(t) = 0. The upper bound for this forecast 
measure is SS(t) = 1, which corresponds to a perfect forecast, while the lower bound is theoretically (-∞).  In 
addition, we compute the equitable threat scores (ETS) and bias scores (BIA) for the 24-hour accumulated 
rainfall ending 12Z 6 March 2004. For a given rainfall threshold, these scores are computed as (eg. Hamill 
1999):  
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In these expressions,  a is the number of  hits, b the number of false alarms, c the number of misses, d the 
number of correct negatives, ie., the number of locations with both forecast and verification rainfall below 
threshold, and aτ is the expected  number of hits in a random forecast. 
 
 
5.2 Forecast skill scores of the 500 hPa geopotential height 
 
Fig.4 shows the SS for the Riishøjgaard method, whereby the covariances are modeled to follow the 
background Ertel PV to some degree. The value of the function correlation length is Lq = 2.10-6K kg-1m2s-1 for 
both experiments reported in the figure. However, one of the experiments uses the original correlation lengths 
of the horizontally isotropic model of equations 1 and 2, while the other uses the correlation lengths of the 
isotropic model inflated by a factor of 50%. It should be noted that the effect of the second term in equation (3) 
is a contraction of the effective spatial correlation lengths, which thus justifies the compensating inflation. The 
results show positive SS for forecast times greater than 12 hours for both experiments, and the best results 
are found for the experiment that uses inflated correlation lengths.   
 
Fig.5 shows the SS for the pure semigeostrophic transformation method, i.e., when the vertical coordinate z 
remains unchanged. The three distinct lines are for simulations that use (i) the original spatial correlation 
lengths of the horizontally isotropic model, (ii) the spatial correlation lengths of the horizontally isotropic model 
inflated by 15%, and (iii) the spatial correlation lengths of the horizontally isotropic model contracted by 15%.  
Except for the small positive SS values seen in two of the experiments one day into the forecast, Fig.5 reveals 
an overall forecast degradation.  
 
The forecast SS for two experiments based on the semigeostrophic-isentropic transformation method are 
illustrated in Fig.6. The two lines correspond to two different ranges allowed for the ratio 22

oNN  of the 
Jacobian matrix (8). The results for both experiments show positive SS values for most of the three-day 
forecast period.  These results, in light of the largely negative results from the pure semigeostrophic 
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transformation method, suggest the importance of correctly specifying the vertical structure in the covariance 
model.   
 

 
 
Fig.4: 500hPa geopotential height forecast skill scores for the Riishøjgaard method. Dashed line for experiment that uses 
the original correlation lengths of the isotropic model and continuous line for experiment that uses the correlation lengths of 
the isotropic model inflated by 50%. 
 
 
 
 

 
 
Fig.5: 500hPa geopotential height forecast skill scores for the semigeostropic transformation method. Continuous lines for 
experiment that uses the original correlation lengths of the isotropic model, dashed (dot-dashed) line for experiment with 
the correlation lengths of the isotropic model inflated (contracted) by 15%. 
 
 
Fig. 7 displays the skill scores of three kinematic experiments that use different time lags, T=3, 6, and 12h, 
respectively. All three experiments yield positive SS for forecast times greater than one day. The SS for the 
experiment with T=6h, however, drop to negative values by day 3. The best results are obtained for T=12h. 
This figure clearly shows that the forecast SS in the kinematic method are sensitive to the specified time lag. 
 
For all four methods, qualitatively similar results are obtained for the 300 hPa and 850 hPa geopotential height 
skill scores (not shown).  
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Fig.6: 500hPa geopotential height forecast skill scores for the semigeostrophic-isentropic transformation method. 

Continuous line for experiment with   25.12275.0 ≤≤ oNN  and dashed line for experiment with 0.2225.0 ≤≤ oNN . The 
horizontal correlation lengths are those of the original isotropic model of equations (1) and (2). 
 
 
 
 
 

 
 
Fig.7: 500hPa geopotential height forecast skill scores for the kinematic method for T=12h (continuous line), T=6h (dashed 
line) and T=3h (dot-dashed line).  
 
 
 
5.3 Accumulated Rainfall 
 
For the analysis and the control run, figures 8 and 9 show the 24-hour accumulated rainfall ending 12Z 6 
March 2004. The shortcomings of the control forecast are apparent from the intensity and location of the 
rainfall maxima that it produces. 
 
Equitable threat scores and bias scores were computed for the 10 experiments of Figures 4 – 7. For each 
covariance method, figure 10 shows the ETS and BIA for the experiment that yields the best ETS. These are, 
namely, experiment with contracted spatial correlations lengths for the semigeostrophic method, experiment 

with 0.2225.0 ≤≤ oNN  for the semigeostrophic-isentropic method, experiment with inflated spatial correlation 
lengths for the Riishøjgaard method, and experiment with T=6h for the kinematic deformation method.  

 8



 
 

 
 
Fig.8: The observed 24h accumulated rainfall in mm ending 12Z 06 March 2004. 
 
 
 

 
 
Fig.9: The 24h accumulated rainfall in mm ending 12Z 06 March 2004 and evaluated from the control run. 
 
 
 
The results shown here are for the geographical region of figures 8 and 9. Qualitatively similar results were 
obtained for a larger domain covering the continental U.S. The ETS scores show that the experiments based 
on the Riishøjgaard method and the semigeostrophic transformation method yield the best rainfall 
improvements over the control forecast. The Riishøjgaard method leads to forecast improvements for rainfall 
thresholds between 1.27 mm and 50.80 mm, while the semigesotrophic experiment  improves the forecast for 
thresholds above 10.16 mm, and  degrades it for thresholds below  this value. The experiments based on the 
semigesotrophic-isentropic transformation method and the kinematic method yield improved forecasts for 
thresholds above 27.94mm and mostly degraded forecasts for thresholds below this value. The bias scores 
show that the Riishøjgaard and kinematic experiments tend to underestimate the amount of rainfall for all 
thresholds, and that this is more pronounced for the kinematic case.  In contrast, the direction of the bias for 
the experiments based on the semigeostrophic and semigeotrophic–isentropic methods depends on the 
threshold. It is also important to mention that, especially for the Riishøjgaard, semigeostrophic and 
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semigesotrophic-isentropic experiments, both the ETS and BIA were found to show little sensitivity to the 
parameter settings explored in this study for each covariance model (not shown). 
 

 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10:  Equitable threat scores (upper panel) and bias scores (lower panel) of 24h-accumulated rainfall ending 12Z 06 
March 2004  for the best experiment from each covariance model as measured by the best ETS. Line with closed circles 
for control forecast, line with open circles for semi-geostrophic method, line with open triangles for semigeostrophic-
isentropic method, line with open squares for Riishøjgaard method, and line with multiplication signs for kinematic method.  
 
 
 
Figures 11-14 display the 24 hour accumulated rainfall for the four experiments of Fig.10.  Noticeable 
improvements in the intensity and overall location of the regions of heavy rainfall in the rainband are seen 
when the Riishøjgaard or the semigeostrophic methods are used. In particular, both experiments lead to 
increased rainfall over Tennessee and therefore to a better match with the observed pattern of Fig.8.  It should 
be noted that the control experiment misplaces the regions of heavy rainfall further northeast, in Kentucky. An 
undesirable feature in the Riishøjgaard experiment of Fig.11 is the bend in the rainband south of Kentucky, 
into Tennessee, which is not verified by the observations. A slight improvement in the location of the rainfall 
maxima is also observed with the use of the semigeostrophic-isentropic and kinematic methods (see figures 
13 and 14). It is interesting to mention that, out of the three kinematic experiments, the experiment with T=12h 
was found to produce a remarkable improvement in the location of the rainfall maxima (not shown). Its ETS 
scores, however, are in general lower than those corresponding to T=6h, which are shown in Fig.10. 
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Fig.11: The best 24h accumulated rainfall in mm ending 12Z 06 March 2004 evaluated from the experiments that use the 
Riishøjgaard method. The best results correspond to the experiment that uses the spatial correlation lengths of the 
isotropic model inflated  by 50%. 
 

 
 
Fig.12: The best 24h accumulated rainfall in mm ending 12Z 06 March 2004 evaluated from one of the experiments that 
uses the semigeostrophic transformation method. The best results correspond to the experiment that uses the spatial 
correlation lengths of the isotropic model contracted  by 15%. 
 
 
 
Summary 
 
Spatial recursive filters and the Hexad algorithm were used to implement four different anisotropic models of 
background error covariances within the Eta 3DVar system, and results were presented from a case study 
featuring a 2004 late winter storm. The covariance models based on the Riishøjgaard method, the 
semigeostrophic-isentropic method and the kinematic method were found to have a significant positive impact 
on the model forecast as measured by the 500 hPa geopotential height skill scores.  In contrast, the 
covariance model based on the pure semigeostrophic transformation method was found to degrade the 500 
hPa geopotential height for all parameter settings explored in this study. In addition, the skill scores for the 
Riishøjgaard  and kinematic  methods were found to display significant sensitivity to the parameter settings of 
the covariance model.  Compared with the control forecast, noticeable improvements of the 24h accumulated 
rainfall were obtained with the use of the covariance models based on the Riishøjgaard method and the 
semigeostrophic method.  In light of the poor 500 hPa geopotential height skill scores for the semigeostrophic 
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model, this result seems to suggest that the evaluation of the performance of a given covariance model might 
be in general metric dependent.  Small, positive impacts on the 24-hour accumulated rainfall were also found 
with the use of the semigesotrophic-isentropic and kinematic covariance models. Furthermore, the equitable 
threat scores and bias scores for the 24-hour accumulated rainfall were found to display little sensitivity to the 
parameter settings when the Riishøjgaard, semigeostrophic, or semigeostrophic-isentropic methods were 
used.  
 
Through a mixture of physical intuition and trial and error, these experiments provided an initial attempt at 
addressing the issue of how to choose the covariance models that are most appropriate to the mesoscale 
3DVar systems. The results seem to suggest that all four models presented in this paper hold promise, and  
 
 
 

 
 
Fig.13: The best 24h accumulated rainfall ending 12z 06 March 2004 evaluated from the experiments that use the 

“semigeostrophic-isentropic method.” . The best results correspond to the experiment with 0.2225.0 ≤≤ oNN . 

 
 

 
 
Fig.14: The best 24h accumulated rainfall ending 12Z 06 March 2004 evaluated from the experiments based on the 
kinematic method. The best results correspond to the experiment with T=6h. 
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that the parameter space associated with each model should be extensively explored before firm conclusions 
on the merits of each covariance model can be drawn. Various simulations for different synoptic situations and 
seasons must be considered, so that some statistical value can be associated with the results. We hope that 
the adaptive prescription of background error covariances will allow us to attain some of the benefits of 4DVar 
while retaining the lower computational costs of a 3DVar system. Finally, it is worthwhile to mention our recent 
realization that the methods presented in this paper can all be cast within the framework of a “generalized” 
Riishøjgaard method by appropriate simultaneous selection of a number of scalar fields {qi}. This will be the 
subject of a future paper. 
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