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1. ATMOSPHERIC BOUNDARY LAYER AND PROCESSES AT THE EARTH'S SURFACE

Paul E. Long
January 1988

1. Purpose of Subroutine PROGTN

PROGTN's main purpose is to predict the surface (air-ground interface) temperature and humidity and to
estimate the fluxes of momentum, heat, and humidity in the surface layer of the atmospheric boundary layer;
supply certain turbulent quantities required elsewhere in the MRF. To do this, PROGTN requires external
calculations of long and short wave radiation; also, surface and subsurface quantities such as roughness
length, snow cover, and soil thermal properties.

The subsections that follow explain the functioning, and the reasoning that underlies the functioning, of the
major components of PROGTN.

We are unable, at the present time, to provide a complete documentation of the surface and subsurface
processes in the model and will only provide the first part. The remaining sections are currently under
preparation and w ill be furnished soon.

1. Introduction to the Surface Layer

Motion within the atmospheric boundary layer is usually turbulent. Although the atmospheric boundary layer
(ABL) is typically 1-2 km thick during vigorous daytime turbulent convection, it may shrink to only several
decimeters at night during stable conditions. Under extremely stable conditions, turbulence can become so
irregular that determining a unique height of the ABL may not be possible.

Subroutine PROGTN computes the turbulent fluxes of momentum, sensible heat, and latent heat (F## £p)
for both unstable and stable conditions within the MRF's surface layer. The surface layer of the atmosphere
(less frequently used near-synonyms: constant flux layer; contact layer) occupies very approximately the
lowest tenth of the boundary layer. That is, hs®0.1 h, in which hs is the height of the surface layer (SL), and h
is the height of the ABL.

The flux calculation serves two purposes. First, the sensible and latent heat fluxes are required for the

equations that predict the air-ground interface temperature (T*). Second, £aF&l21#5 can be used to specify
the lower boundary conditions for the diffusion equations in VERDIF that simulate turbulent transport of
momentum, heat, and specific humidity above the surface layer. At the present, however, the fluxes of
PROGTN are not used directly in VERDIF's boundary conditions, but rather turbulent quantities from
PROGTN are passed to MONIN which are then used to reconstruct the surface layer's turbulent fluxes.

The top of the ABL in the current MRF is not confined to a predetermined number of layers, in contrast with
earlier versions in which all turbulent diffusion (and therefore the ABL) was restricted to 1.5 km above the
ground. The surface boundary layer, however, is assumed to be the lowest model layer for the current and
previous versions. Until recently, the MRF used a 56 mb thick surface layer. The current version's surface
layer is, by contrast, only 10 mb deep. The earlier surface layer was much too deep. In the real atmosphere,
56 mb can contain much (for convective conditions) or all (for stable conditions) of the entire ABL. Flux
calculations from the new MRF are, therefore, expected to be more realistic than those from the MRF that
used the deeper SL.

A deep model surface layer creates several difficulties. First, the relations that are used to compute the
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surface fluxes may well be forced beyond the limits for which they are valid. The calculation of surface layer
fluxes in the MRF depend upon the non-dimensional variable hs/L, where L, the Obukhov (or Monin-
Obukhov) length, is a measure of surface layer stability. The Obukhov length is positive for stable cases,
negative for unstable cases, and diverges to %1 as neutral conditions are approached. A small value of -L,
coupled with a large hs, yields a large -hs/L, indicating a condition of extreme instability.

There are certain 'universal' functions used in most SL relations that depend upon the non-dimensional height
Z/L. The experimentally verified range of validity of these SL relations is about -Z/L = 2.5 for unstable cases
and Z/L =2 for stable cases (e.g., Businger et al., 1971). Within this fairly narrow range of stability, the SL
relations agree with field data reasonably well. Outside this range, it is uncertain whether the standard SL
relations are valid. the few experimental field data that exist suggest that the standard SL relations are not
valid (e.g., Carl et al., 1973). For strongly stable cases (Z/L = 1), the question of validity is particularly vexing,
since there is no general agreement upon even the functional forms of the SL relations or if there is a ‘critical’
Richardson number (Ric) for which the SL fluxes vanish. Stated somewhat differently, it is not known if there
is a Ri for which Z/L - = as Ri-=Ric.

For strongly unstable cases, on the other hand, it is not clear if the conventional SL relations used in
PROGTN should be retained or if they should be replaced by some form of free convection relations. Existing
empirical data are insufficient to definitively resolve the issue: lacking such a verdict, computational
considerations become a prime factor. Free convection SL flux-profile relations have a computational
advantage. With free convection relations, SL fluxes remain finite as the windshear is reduced to zero, in
contrast to the standard relations for which heat and moisture fluxes become unbounded. Past experiments
with the MRF have revealed isolated instances of inordinately strong heat fluxes. Unrealistically large surface
fluxes in PROGTN can usually be suppressed by prohibiting the SL windspeed from falling below a fixed
minimum value, which in PROGTN, is 1 ms-1. This tactic has eliminated most, but not all, unrealistic values

of hs/L and F=; however, several related problems remain.

First, strongly unstable potential (or virtual potential) temperature gradients can occasionally produce
unrealistically large fluxes even if the SL windspeed remains above the minimum value. In addition, a
compatibility problem, common to two-tiered ABL models, occurs at the interface of the SL and the second
the layer of the MRF. The result: the diffusion coefficients are not continuous across the interface. The
discontinuity intensifies with increasing -hs/L. To remove the discontinuity either the flux-profile relations in
the SL or the diffusion coefficient relations above the surface layer must be reformulated. A simpler
alternative is to substantially decrease hs. The considerable reduction of the height of the surface layer in the
model is not a complete palliative. A very shallow surface layer, while reducing the chances of unrealistic
simulated surface fluxes, creates fresh computational and parameterization problems.

One such parameterization conundrum occurs over regions with large roughness. Within these regions,
surface flux calculations can be rendered invalid unless the (representative) Zo is very much smaller than the
height of the surface layer. The largest roughness lengths in the current MRF are between one and ten meters.
It is difficult to give a physically sound, compelling argument for these large values, but a plausible rationale
is given in Baumgartner and Mayer (1977). The Zo field over land in the MRF is based upon their estimated
values. We do not use their Zo fields over oceans. PROGTN computes its own Zo fields that depend upon the
frictional stresses at the oceans' surface.

A strong caveat again the use of large Zo was given by Garratt (1977). His analysis of field data suggests that
the standard flux-profile laws are invalid within the sublayers Z < 35Zo for momentum and Z <= 100Zo for heat
and (presumably) moisture. This disconcerting result implies that for Zo = 2m, the standard SL flux-profiles
laws are highly suspect within the first 70 m above the surface for wind and 200 m for temperature and
humidity.

Since hs is 10 mb in the MRF, Garratt's sublayer exclusion principle - if correct - indicates that the fluxes
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computed by PROGTN will be probably quite erroneous over the domains of maximum roughness in the
MRF. We note that these domains cover a greater area in the ECMWF model (Tiedtke et al., 1981) than with
the MRF. Arbitrarily reducing the values of Zo in the regions where Zo > 1 mis a crude but useful
‘correction’, as MRF experiments seem to show. The issue of the physical reality of large roughness lengths
remains unsettled, as is the possible distinction between the Zo for momentum, heat, and moisture.

As noted, there can be computational problems created by the use of a very shallow surface layer. A thin
surface layer implies that the adjacent layers are also relatively thin (layers 1, 2, and 3 in the MRF are 10, 17,
and 25 mb deep). The adjacent layers in the MRF use turbulent quantities computed in the SL as lower
boundary conditions for the diffusion equations ("K-theory" equations) for heat, momentum, and moisture.
The diffusion equation for each of these variables is approximated by a fully (in a linear sense) implicit finite
difference scheme. This implicit difference scheme for constant K and 4Z is known to be absolutely stable
for all time steps (4t). Computational experience, however, shows that, for layers of variable thickness and
for diffusion coefficients that depend upon the local Richardson number, the accuracy, and even the
computational stability schemes, can be severely degraded as the Fourier number (= &4¢/4Z% ) is increased.
Feed-back oscillations between the K profiles and the predicted #, u, v, q profiles will cause the solutions to
behave increasingly pathologically. While not necessarily unstable in the usual sense( the relations can
become completely useless rather quickly. Our recent experiments show that much of the erratic behavior can
be eliminated with an adaptation of a predictor-corrector method.

We see from the caveats discussed above that the choice of the depth of a model's surface layer is not
arbitrary. The surface layer can be neither too deep not too shallow if unrealistic numerical numerical for flux
parameterization computations are to be avoided. It is believed that the current value for hs used in PROGTN
strikes a judicious balance.

1. Surface Layer Relations: The Monin-Obukhov Flux Profile Laws

Two of the most frequently encountered problems in boundary layer meteorology are the determination, from
minimal number of parameters, of the surface layer fluxes of momentum, heat, and moisture as well as the
synthesis of the complete mean SL profiles of wind, temperature, and specific humidity. PROGTN computes
the SL fluxes and profiles and employs results in the solution of the surface temperature over soil, snow, and
sea ice. Turbulent quantities computed in PROGTN are also utilized as the lower boundary conditions for the
computation of changes in wind, temperature, and humidity for the portion of the boundary layer that lies
above the surface layer.

The focal point of most modern flux-profile relations is the similarity theory positioned by Obukhov (1946),
and Monin and Obukhov (1953, 1954). The Obukhov similarity theory can be invoked to show that the
turbulent fluxes in the SL are uniquely determined from six quantities: the local roughness length; the
air-ground interface (surface) temperature and specific humidity ( Qs, gs); also, Q(Z), U(Z) (windspeed); and
q(Z). The height Z can be any height within the SL, provided Z>>Zo. PROGTN uses this uniqueness property
of Obukhov similarity theory to compute all the required SL turbulence variables required by the MRF.

We now delineate the basic Obukhov relations used in PROGTN. First, Obukhov similarity postulates the
existence of ‘universal' functions ZrlZed2141&0 gych that the nondimensional vertical gradients of wind,
temperature, an d moisture are given by:

2L - gul2) @D
25z = dulf) @3
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kz 8 (E) (4.3)

omoaz = felr

in which k is the von Karman constant ( k=0.4), and b, ¢ are nondimensional constants near unity; the
constants b and c are the neutral turbulent Prandtl and Schmidt numbers. The turbulent scaling parameters -,
#. and ¥-have dimensions of wind speed, temperature, and humidity. These parameters are a measure of
turbulent fluctuations and vanish when the SL becomes laminar.

Unfortunately, the original Obukhov similarity theory only assumes the existence of the FM,H,Q as functions
of Z/L. No current theory, moreover, exists that accurately specifies the universal functions over the entire
stable and unstable range found with the field data or the even more extreme range encountered in global
forecast models. The so-called ‘higher-order' closure models have been reasonably successful, however, in
simulating measured flux-profile relations (see e.g., Mellor and Yamada, 1982).

The paucity of high-quality field data to definitively specify interpolation formulae for FM,H,Q over extreme
stability ranges has created a proliferation of semi-empirical functions. Intuitively plausible but conflicting
arguments are frequently marshaled to support one set of functions over another. Surveys by Dyer (1974) and
Yaglom (1977) compare many such relations. The relations for the unstable and stable (Z/L > O) cases that
have beenmost used in numerical models are given by Businger, et al. (1971),

"‘6”(%) B (1'15 %)-lﬂ b=t © (4.4)
dulz) =1+ a7F L= 0 ®)
'j’H(%) N 'j’ﬂ(%) N (1_9%)'1’2 =0 @ (4.5)
‘f’H(E) - ‘f’ﬂ(%) —1+6357 =0 )

in which k=0.35, b=0.74. Dyer (1974) and Hicks (1976) proffered comparable profiles:

gﬁ,,f(%) - (1-16 %)_lﬂ L= 0 @)
%f(%) =14+54 L= 0 ) 4o
ulf) - dolf) - (isf) T es0 @

)= delr z ’ @7
gﬁH(E) - gﬁg[:%) =1+5% L= 0 )

The Businger relations are more often employed in numerical models than the Dyer-Hicks relations.
Computational experiments, however, suggest that the Dyer-Hicks system provides a slightly more rapidly
converging solution f or Z/L < O than the Businger relations. The MRF uses a rather contrived extension of
the Dyer-Hicks relations in PROGTN and MONIN in order to circumvent an otherwise prohibitively small
critical Richardson number. The calculation of L is central to subsequent calculations of surface stress,
sensible and latent heat fluxes, and the eddy diffusion coefficients.

1. Relation Between the Gradient Richardson Number and the Obukhov Length
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There is a simple relationship between the gradient Richardson number and the scaled height Z/L, as can be
seen by solving for &+, and #+from the Obukhov profile laws (4.1, 2) and substituting into one of the defining
relations for L; that is,

- ui
= k@,
) 8
i = ﬂ .

In (4.8), &/&is the standard buoyancy parameter, and Qo is the so-called kinematic heat flux (= — &), It
should be pointed out that these equations are 'dry' and should be modified when the latent heat flux assumes
a significant role in the surface energy balance. The result of substituting (4.1,2) into (4.8a) is

R,
it
7= " (4.5)
f’fﬁH( L')
[E i@(ﬂﬂ
inwhich Ril ~ # % is the local gradient Richardson number, and we have assigned Z = hs in (4.9).

We see that L, #+, and the 'dry’ gradient Richardson number must have the same sign; that is, Ri, L, and #-are
negative when the sensible heat flux (- e£zu.&.)is positive (upward), and are positive when the sensible heat
flux is negative (downward). The sign of #: should always be positive; a negative #- is always unphysical. A
negative - is a spurious solution of (4.9, 4.6, 4.7b), for example, in the strongly stable case when the critical
Richardson number is exceeded. Negative ¥+ are avoided in general and in PROGTN by constraining Ri to be
0 <Ri<Ric.

The formal (mathematical) question of whether a critical Richardson number exists hinges upon the
functional forms of the stable flux-profile laws. That a critical Richardson number exists for the Dyer-Hicks
relations follows immediately from the linear form of (4.6b) and (4.7b). Substitution into (4.9) yields

e

B= st

(4.10)

Taking the limit £/& - =  we see that the Richardson number steadily increases to the limiting (critical)

value,
lim RI(E) = Ri, = 0.2 (@11
A TR T

For the general linear profile laws given by

dag =1+ QHE (4.12)

and
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=1+ ayp @.13)

the asymptotic value - the critical Richardson number - is

. A
i Ri{7) = R =02 @14

For the Businger profile laws the critical Richardson number is 0.21. The gradient Richardson number cannot
exceed Ric without causing Z/L to become negative, a mathematically correct but physically prohibited
solution. If , as is common in a model, Ri exceeds Ric, then either Ri or##/#&must be decreased or #&/#&must
be increased to force Ri < Ric.

Such relatively small critical Richardson numbers which follow from the Hicks and the Businger profiler laws
are too restrictive for use in PROGTN. It is a feature of PROGTN that the linear flux-profile laws (4.6,4.7b)
are not considered valid for all positive Z/L but rather only over the mildly stable range 0 < Z/L < 0.5. For the
stronger stability range 0.5 < Z/L < 10, and for the extremely stable range (in which turbulence is largely
extinguished), PROGTN uses,

-

2 _ 42 _ z Z
4 = 92— as(Z] 4 (Z) fords = Z/Z = 10 (4.15)
and

(3 0 _ Z 4.1
$o = G4 = B=0T6F forfZ /i = 10 (4.16)

There is little empirical support for these relations that were first proposed by Carson and Richards (1978) as
an extension to the linear Hicks flux-profile laws. Their major effects in PROGTN are to: shift Ric from 0.20
to 1.32; allow a small downward surface heat flux within the otherwise super-critical range 0.2 < Ri < 1.32;
needlessly complicate PROGTN by imposing iterations with little evident practical gain. To simplify the stable
flux-profile system used in PROGTN while maintaining the small downward super-critical heat flux requires
new flux-profile relations in PROGTN. Although not particularly difficult, this is not an approach we will
pursue further here. A change in the flux-profile relations will be made within PROGTN only after the
influence of the current formulation upon the heat and vapor flux and also the diurnal temperature wave is
better understood. Another reason for temporizing is the need to construct a suitable stable SL formulation
that is also comparable with the existing K-relations above the SL. Suitability and compatibility are not trivial
constraints.

1. The Relation Between the Bulk Richardson Number and the Obukhov Length

The stable and unstable relations for Z/L given above depend upon local gradients of temperature, windspeed,
and humidity. It is important to note that none of these quantities is known in PROGTN, however, where the
SL is treated as a bulk layer with no internal refinement. Only bulk differences are given, for example,

8= #(D=#(Zy)] between the ground and mid-way into the SL (or at the top of the SL)]; similarly, for q and
U. Accordingly, the Richardson numbers used in PROGTN is not the gradient Richardson number as used
above, but rather a bulk Richardson number (RiB). This bulk Richardson number is defined (‘dry form’) by

. g hA@
RIE. = ﬁm {41?)
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where it is assumed that the wind speed vanishes at Zo. Calculations with RiB and hs/L require that the
flux-profile relations be integrated from Zo to hs where hs >> Zo (a physical rather than a mathematical
requirement). The integrated flux-profile relations complicate the problem algebraically, although the relation
between Z/L and RiB has the same simple form as for the gradient Richardson number relation,

&,
P F”(f;f)
- Tzl @19
ol 12
in which
e Z b
FM.H(E-T”) - J busl ) @19
g

L]

The quantities FM and FH are the integrated forms of the flux-profile laws and are given by, for unstable
conditions (the Dyer-Hicks relations),

[ @®eb@, + 1 4 o
(4,20
Fo—m (=) + 1) .
MET @, DG | ()
H H
h Z
Ry = (1-16 f) . Bg= (1-163”)
. ) (4.21)
B E ZhF
0, = (1-16 E) . o= (1-16?°)
Approximate forms of these relations for -L>> Zo are,
[ @ ] ] 7
Far = In T + tan 1R, + In 2= fa) 4.22)
] I (L =l i
.:'Jln,-f_lrlmwlzI +In2 . )

For the Dyer-Hicks-Carson-Richards stable case, the relations corresponding to (4.20) are,
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Flll o o LR | TR
ML ]J’l(zu) + S(L L)IJIE = 0.5

-1 -z
R i 1/k B
21 _ s Beh L0l g (e . |
P = sm(L) + 4.25(L) 'Z(L) -FMIH(L = n.5)|, (@)
i (4.23)
05 = f = 10
h h h
@ _ sl gl [ _ gt
Py = D.?ﬁ(L)-FHH(L = 1n:1|)|,|L = 10 by
In the neutral case (& — 1), the relations for hs/L reduce to
R
Freg ~ | 7 I (4.24)

It is difficult to see how (4.19) and (4.20) reduce to this simple relation in the near-neutral limit; accordingly,
alternative, but equivalent, forms for FM, H are often used. This form is achieved by adding and subtracting
Z-1 to the integrated profile relations, which, for the unstable case yields,

LN LR
Fag = J dfz"' J dz—z(%f.H'lL (4.2
z z

2
Ba + RE
FH=]H(ETF)+]H(1+ ::-}2[ + ::']
i [L+ Ry (1 ¥ Ri)

(el .

For the stable case, it is clear that FM,H reduces to (4.24).

+ 2ftan 1R =tan R, ()

(4.26)

To simplify the notation, this last system is usually written in the conventional form (as it is in PROGTN)

.PE;I ZIZI fts 'PEFI ZIZI
FMIH(E,T) = .!':".!(Z—D -E‘EJH.H r,r (4.2?:]

where the functions#s+may be considered to be 'correction’ terms that account for the departure from neutral.
Both®.and¥. (= ¥<) are zero for &/Z - 0 and increase as |hs/L| increases. For conditions close to neutral, #se«
increase linearly; for strongly unstable conditions,#s+increase logarithmically:

- - 3
o = oL, = L bl | o @3
LU
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Eqgns. (4.18 - 4.21) seem to show that hs/L is a strongly nonlinear function of RiB, at least in the unstable
regime. Computational experience shows, however, that for RiB < 0 this is not the case and that a few
iterations ar e sufficient to yield and adequate approximation to hs/L. In the extremely stable case near the
critical Richardson number, hs/L is a very sensitive function of RiB. For such values the (downward) fluxes
are quite small, and a close approximation to hs/L is unnecessary, especially since the relationship between
hs/L and RiB is largely conjecture.

1. Specific Forms of the Profile Laws and Choice for Selection of Certain Boundary Layer Constants

The exact functional forms for #«+ with their attendant constants is still a matter of active dispute among
boundary layer meteorologists, as is the value of von Karman's constant, the most fundamental constant in
turbulence theory (in fact, von Karman's constant may not be a universal constant at all, but may vary slightly
with the slow regime). In any case, two differing values prevail: that of Businger, et.al. (1972), who give k =
0.35, and Dyer and Hicks (1974), who give k = 0.41. The reason for the differing values of the von Karman
constants as well as the other free constants have been suggested by Wieringa (1980) to be systematic
experimental error. The uncertainty in the current forms of #«, at least for the unstable case, is not likely to
lead to very differing values of the surface fluxes.

The stable case is less settled. There is, first of all, the question of whether a critical Richardson number
exists, and if it does, what its value is. Over the past several decades, the accepted value of Ric (assuming it
exists) has fluctuated but has usually hovered about 0.2. All flux-profile laws, whatever their functional forms
for small and moderate values of Z/L, are ultimately constrained by critical Richardson numbers provided # s«
become linear as 2. PROGTN provides a particular example of such functions, as proposed by Carson and
Richards (1978). Although their proposed profiles are nonlinear for moderate values of Z/L, for larger values
their #4+ return to linear. Their system therefore, falls prey to the fate of all linear profile laws: a critical
Richardson number, albeit displaced. For our use in the MRF, their manipulation of the profile laws seems
hardly worth the additional computational effort, since the final result is merely a shifted Ric, with no fluxes
whatever for values exceeding Ric = 1.32.

It is planned that the MRF will have the Carson and Richards profiles replaced by a set for which &iz — =
These new profile-flux relations do not require iteration to estimate hs/L, and have the property that the
surface fluxes decrease smoothly as RiB increases.

1. The Solution for the Obukhov Length from the Nonlinear Equations Using the Standard Newton
Raphson Method

The determination of the Obukhov length (L) is basic to the calculation of turbulence quantities in the surface
layer. The turbulent surface fluxes of momentum, sensible heat, and latent heat (F«lfxlz) are given by,

Fyg = =ou? = [n(:m 22 aa‘[z’r] udl (4.30)
Fy = =008, = [;J(R:z) Ygrbed 133] ki (4.31)
FQ = woloillege = '[ u(m)2[¢H¢H] lﬂU] Zg (4.32)

These relations, derived from (4.1-4.3), show that the fluxes depend upon the local gradients of U, Q, and g.
As they stand, Equations 4.30-4.32 are not of immediate use in PROGTN, since PROGTN does not deal with
local gradients but ratherDQ,U and q . The bulk difference relations (4.19-4.20) can be written as,
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e = k% (4.33)
By = % (4.34)
G = % (4.35)
Substitution of (4.33-4.35) into (4.30-4.32) gives

Fop = =0T (4.36)
Fi = =00t V0 (437
ﬁg = BLC Uy (4.38)

In the above, r is the density of air, cp is the specific heat of air at constant pressure, and Lv is latent heat of
vaporization. Variables CD, CH, and CQ are the transfer coefficients for momentum (the drag coefficient),
heat, and latent heat, and are fundamental to PROGTN. Combining (4.33-4.35) with (4.36-4.38), we get the
important result,

2
i k2
C:'L = ( ) = = (4.39)
i i
By, Al
Co=Ce=mE T FF,L (440)

assuming FH = FQ; b = ¢ = 1 (Dyer-Hicks 1970). The transfer coefficients CD and CH are non-negative and
vary smoothly with hs/L. The coefficients increase with increasing instability and decrease with increasing
stability. An order of magnitude of change in CD,H can be reasonably expected within a typical MRF
forecast.

If L (or hs/L) is known, then FM,H, CD,H, and the surface fluxes are readily computed. The central problem
is this: given DQ , U, Dg,?& = #2, hs and Zo, use (4.18) - or a relation derived from (4.18) - to compute L
efficiently. We have noted that (4.18) seems to be rather nonlinear because of FM,H, but computational
experience proves the nonlinearity to be benign. We also noted that for the near-neutral case, (4.18) collapses
to

;P ]
Li = EIEI“(Z%)' (4.41)

This simple relation - unexpectedly - proves to be a fairly accurate approximation to (4.18) over a fairly wide
range of unstable cases (unless Zo is very large).

10 of 42 10/22/2010 1:18 PM



11 of 42

http://www.emc.ncep.noaa.gov/gmb/wd23ja/doc/web2/chap4pc.html

To help substantiate this claim, we examine the behavior of a general fM,H,

=1

b= (1) @

T A as

for small values of - Z/L. We have

By =1+ %"fcj + O|¢%] (4,44)
B = 1+ FT“Q + OI¢?] (4.45)
and
_ =z Yur 2 £,
Fo = ln(za) + (8] + O[E, 1% (4.46)
Fy = 1n(ZZ_) + ”Tﬁ(g.gu) + Ofe2 %) (4.47)
1]

in which##:-, By substituting (4.46-4.47) into (4.18) and making some approximations, we get

£ = Rialn(z‘za) + %(}'H-}'ﬁjﬁézfln(%). (4.48)

For the Dyer-Hicks relations (unlike the Businger relations) gM= gH=16. Thus, the RiB2 term vanishes, and
(4.12), fortunately, proves to be accurate to (at least) order RiB2. Calculations show that (4.12) tends to
consistently overestimate -hs/L somewhat for most reasonable values of RiB and Zo.

To get an accurate approximation to hs/L for cases of strong instability and large Zo, an iterative solution
must be invoked. For this the Newton-Raphson method is used to get rapid, quadratic convergence. Iteration
is also required for much of the stable regime.

We first form the function G(zs, z0) in which hs/L. We must solve

GiE, o) = af-mgpi{: —0 (6.49)

The Newton-Raphson iterationto F (x) =0 is

10/22/2010 1:18 PM



http://www.emc.ncep.noaa.gov/gmb/wd23ja/doc/web2/chap4pc.html

1 _ o FI
=y -W- (4.50)

Thus, the n+1 iterate for z is

_en CIEF
pri=gr, é—r._g f), (4.51)
@ les

s 1_&?&3*?52*@!?52' FiffiFtc

&~ e T Mer

4.5
@ @5

BF ooz
Expressions for €& over the entire stable-unstable range are rather tedious and will not be reproduced here.
Convergence occurs within several iterations, except for seriously anomalous cases.

1. The Introduction of Virtual Potential Temperature into the Surface Layer Equations

Upon introducing the Bulk Richardson number in (4.17), we noted that this definition is strictly valid only for
'dry’ conditions in which water vapor does not significantly alter the density of air. To generalize RiB, we
account for the effect of moisture by selectively introducing virtual potential temperature, gv, in place of g.

The turbulent kinetic energy equation (see, for example, Brutsaert, 1982) requires that the kinematic heat

flux, w@q@, be replaced by w@q@+ 0.61 q w€q€ in the buoyant production term. This has the effect of
introducing virtual potential temperature and forces us to expand the definition of the ‘dry’ Obukhov length:
uitg

I = -W;IQ" = W = Haﬂal

The kinematic heat flux Qo must be replaced by

D = =ttasblp, = WB7]. (4.53)

The introduction of moisture does not change the original simple form of the relation between hs/L and RiB
provided: (1) nq in RiB are replaced by nqv and; (2) 6Q(Z/L) =6H(Z/L); (3) the roughness lengths for heat
and humidity are equal, although they need not equal the roughness length for momentum. The assumptions
that 6Q=0H and ZoQ=ZoH are standard for most numerical models, including the MRF.

We begin with the defining relation for qv,

By = #(1 + e)]Je = 0.61 (4.54)

from which we have

B = 671 + egi] + efg’ +] by (4.55)

The higher-order term #z* will be omitted, thus giving,
Wl = (14 eqhw' @] + eow'g' (4.56)
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or, equivalently,

o = (1 + eqditbe + €628 (4.57)

We recall that

£k
u = g6, = KO g, - 7Y, 45
M & L

which, when substituted into =4 -yield,

g;.kzydg= N cszUﬂqr:I
FuF FuFo

The potential temperature difference 4# in (4.59) can be approximated by

Al = 8" {laeg) AL et o, (4,60
The two e-terms are generally of very different magnitude: eqDqv can be neglected in comparison to €847,
This leads to

k20 (BB, B g=CFy
Wby, = -+ 641 - — (4.61)

’ _F;[ & q[ up

This relation for ##¢« the moist analogue of

. bkEiAG
Wby = , (4.62)

Fuf ¢

contains the perturbation term, €#4¢(bFQ - ¢ FH)/FHFQ. The SL relations used in PROGTN set b = ¢ = 1;
further, both the Dyer-Hicks and Businger (b = ¢ = 0.74) relations assume that

&

Fy = J 2pl) (463)
zilﬁ'
&

Fy = J Z (gD (4.64)
Eag

are equal. This equality subsumes both ## = #2 and Z0Q = ZOH . The presumed equality of FH of FQ
conveniently causes the moisture perturbation term in ##. to vanish. This yields

. BRRUAB,

i Pk _FF{,&_ (4.63)
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and
Fe .
n, .
7= FEIEIEI; (4.66)
- A8
Rip = & ST (4.67)

The form of the basic relations therefore remains unchanged, except of the replacement of 4# by 48.. The
calculation of L and FM,H,Q proceed as before [N.B.: FH =-rCpCHUDq, as before; 4# is not replaced by U
48, PROGTN requires the sensible rather than the virtual heat flux in the surface energy balance.]

Given the lack of compelling evidence, we have not explored the possibility that ZoH ZoQ or fH fQ
although there is fairly strong evidence that, in general, ZoM > ZoH,Q (Garratt, 1978, Garratt and Francey,
1978). Theory and experiment show that ZoM should be much greater than ZoH or ZoQ over rough areas.
The physics of momentum transfer involves viscous shear as well as form drag generated by sharp local
pressure gradients. This process is considerably different from that of heat and moisture transfer that involve
molecular diffusion as well as turbulent diffusion. Garratt (1973) has suggested that ZoM * ZoH. On the other
hand, there is little evidence to suggest that ZoH ZoQ or foH foQ. For this reason, as well as for
computational efficiency, we assume the perturbation term vanishes and that (4.66) can be used in PROGTN.

The static stability of the surface layer, therefore, depends upon the vertical gradient of the virtual potential
temperature rather than the (dry) potential temperature. This distinction can lead to the seemingly paradoxical
situation in which the (kinematic) sensible heat flux (-=#-) flows in the opposite direction to the virtual heat
flux (-=#:). No paradox exists, in fact, since the fluxes play differing roles. The sensible heat flux, along with
latent, ground, and radiation fluxes, enters into the conservation of energy relation that determines the surface
temperature. The virtual heat flux, on the other hand, enters into the conservation of turbulent energy
equation that determines the rate of change of turbulent kinetic energy. Along with the virtual turbulent heat
flux, there are also terms representing shear production, viscous dissipation, and redistribution of turbulent
energy.

Physical intuition suggests that opposing model fluxes of sensible and virtual heat should arise only for
near-neutral conditions involving weak surface fluxes. Our model forecasts what this is not always the case.
For a given U, 48, and 47, the functions FM,H,Q decrease with increasing Zo; concomitantly, the transfer
coefficients CM,H,Q increase. For a mildly positive ¢, and with large Zo and -47, the sensible heat flux
(downward) can be readily exceeded by the - 0.61 uoqo term, thus producing an upward (unstable) virtual
heat flux. MRF forecasts demonstrate that these antiparallel heat fluxes arise most commonly over tropical
land areas. In these cases, the negative sensible heat fluxes tend to raise the surface temperatures, while the
positive virtual heat fluxes tend to increase the turbulent kinetic energies.

1. The Computation of Surface Temperature

The surface temperature in the MRF is predicted over all solid surfaces. These surfaces include: soil, snow or
ice lying upon soil; sea ice; snow lying upon sea ice. Temperatures of water surfaces are subject to rather mo
re complex physical processes than solid surfaces and are beyond the current capacity of the MRF to
forecast. Temperatures of water surfaces, important as they are for the calculation of evaporation over much
of the globe, are treated as passive elements and uncoupled in the MRF from the prediction of solid surface
temperatures. Water area surface temperatures are externally supplied. See Chapter 7 for more detail.

The surface temperature Ts(t) (hereafter, 'surface temperature’ denotes the air-ground interface temperature
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over a solid surface at about Z = Zo) is influenced by the energy fluxes of short and long wave radiation and
latent heat, ground heat transfer, and liquid-solid phase changes. The two fundamental techniques for
computing surface temperature in NWP models are the energy balance and the temperature "marching™ (or
tendency) methods.

Energy balance techniques require the vector sum of the energy fluxes to vanish at the earth's surface at each
time step. This stipulation leads to a nonlinear equation of the general form f(Ts) = 0, where each term of
f(Ts) is an energy flux term that, except for the short wave radiation flux, strongly depends upon the surface
temperature. Variables not directly related to Ts in an energy balance are treated as quasi-constants for a
given time step.

Solutions to energy balance equations are commonly computed by using the Newton-Raphson itertive
root-finding technique which requires the calculation of 4/47:, The derivative of f(Ts) usually cannot be
expressed completely analytically, since an energy balance equation usually contains terms in Ts that are not
in closed form. Accordingly, @ /Z¥:must be approximated by the semi-linearization of f(Ts) or by finite
difference approximations. Approximations can slow convergence. A simplified energy balance method has
been used in the MRF in the past to initialize surface temperatures, after which they were 'marched’ forward
in time by a predictive equation.

Energy balance method in NWP models differ chiefly in their handling of the surface heat flux term
(hereafter, to be denoted as the "ground heat flux", including cases in which the surface is snow or ice).
Although the ground heat flux is generally relatively small compared to the above-ground fluxes during the
day, it si the ground heat flux which largely balances the infrared surface heat loss at night. The ground plays
an important role in absorbing and storing energy during the day for release at night. If is neglected, then the
computed nocturnal infrared loss results in an unrealistically rapid surface temperature drop.

In some models, is equated to a specified fraction of certain above-ground fluxes. The approach simplifies the
mathematical formulation of f(Ts). It is partially justified on empirical grounds and also on the grounds t hat
an accurate estimate of is a chimera, due to the lack of sufficient reliable subsurface data - or complete
absence of such data - over much of the globe. For example, Kasahara and Washington (1971) proposed that

¥ (4.68)

|

g=

for bare soil; Fuchs and Hadas (1972) suggested instead

G = =tRpe |l = 0.3 (4.69)

in which Rnet is the net long and short wave radiation at the surface. Their analysis indicates that & = Rnet is
better satisfied for wet soil than for dry. For dry soil, a phase shift apparently exists between & and Rnet.
Nickerson and Smiley (1975) proposed two values for r as the result of their analysis of the O'Neill data: 0.19
for downward Rnet and 0.32 for upward Rnet. These simplifications for & are unlikely to be generally
applicable, however, since the ‘constants' of proportionally probably depend upon location, soil moisture, and
time of day.

The simplifying limiting case, & = ¢, was used by Manabe et al. (1974) and more recently by Mahrt et al.
(1984) [later recanted: Mahrt et al. 1988)]. Nulling § is equivalent to assuming that the surface is a perfect
insulator with zero thermal conductivity. Mahrt et al. (1984) argued that a perfectly insulated land surface is a
good approximation over much of the globe. This arises because of the poor heat conducting properties of
accumulated vegetative debris. Their model experiments imply, however, that perfect insulation is generally a
poor assumption, as was foreshadowed by Deardorff (1978).
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Snow, an exception, is an excellent insulator: the heat conductivity for snow is more than an order of
magnitude smaller than for (say) clay.

Differing soil types exhibit great variation in & and 7«13, Novak and Black (1985) presented simulations in
which the daytime maximum § for wet sand (a good conductor) was 325 Wm2 while & for dry peat (a poor
conductor) was 25 Wm2. The surface temperature maximum for the peat exceeded that for sand by about
505C. In addition, the peat reached its maximum temperature several hours earlier than the sand. Similarly,
Deardorff's simulations in which the ground was treated as a perfect insulator showed that the maximum
calculated temperatures over a clay pasture, dry quartz sand, still muddy water, and the O'Neill soil were
higher and were phase-advanced compared to the simulations with proper thermal conductive properties.
Deardorff's nocturnal simulations also showed the expected unrealistic rapid temperature drop at night for
perfect insulators (& = ©). Grossly over-simplifying the calculation of & or by neglecting & altogether achieves
a computational economy that degrades both simulations and forecasts.

The most widely used methods for computing surface temperatures in NWP models are those which solve
time dependent forecast or "marching” equations for Ts Predictive equations for Ts are the most commonly
used equations for calculating Ts in NWP models. The appeal of predictive equations lies partially in their
abandonment of cumbersome iterative processes required by energy balance methods and partially in the
intuitive physical reasonableness of the role of the flux forcing functions. That is, the direction of the
individual fluxes (positive or negative) conforms to the intuitive notion of a rising or falling surface
temperature.

PROGTN uses the more straight-forward (yet more time-consuming) of the two most commonly used
predictive techniques: a finite difference solution of the subsurface heat transfer equation. The vector sum of
the above-ground fluxes supplies the upper boundary condition. The lower boundary condition is the deep

(= T..) below ground temperature that is sufficiently deep to be immune to diurnal influences. In the current
MRF, the depth of 7= is 5 meters. - varies from gridpoint-to-gridpoint but is independent of time (see the
chapter on 'fixed-fields' ). The choice {¥-;Z -} is not clear-cut and partially depends upon the nature of the
NWP model, e.g., mesoscale or GCM. The selection of {¥--;Z -} also depends upon subsurface thermal
properties and the number, depth and separation of the subsurface levels.

The more frequently used method for predicting Ts, especially in mesoscale modeling, was devised by
Bhumralkar (1975) and independently by Blackadar 91976) [hereafter denoted the BB method]. The BB
method uses only two level Is, the air-ground interface and Z , but suffers from a similar ambiguity in {7 «;Z =
} as does PROGTN.

Standard equations for heat transfer are used in the PROGTN and BB methods. Heat transfer within the
ground can be predicted by

IR MG(SHD
LT T CH70)

arrat
60 = ok, 1oy @71

In these subsurface heat transfer equations, z is, by convention, positive downward; #: = density of the soild
subsurface; ¢s = subsurface specific heat; e+: = volumetric heat capacity; Ks = subsurface thermal diffusivity;
(%1 = subsurface heat flux at depth z [nb: & continues to denote &z — &, also, Ts = Ttz— &, 1], The lower
boundary condition for the heat transfer equations is 7tz ) = 7., The upper boundary condition is computed
from the energy balance equations,
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Ryg + Hg + g + 6 = 0 (4.72)

Note that the distinction between iterative energy balance techniques and techniques urging predictive
relations is more apparent than real - the techniques are, of course, all expressions of the conservation of
energy. The choice of one over the other id dictated by simplicity, computational economy, and numerical
sensitivity (e.g., convergence rate for the energy balance, 'stiffness' for predictive differential equations).

In particular, the BB technique originates with an energy balance relation in which 621 is approximated by
an expression that contains the difference Ts - 7= and a term proportional to dTs/dt:

6=6@>00=2TT+ }3—%]1 t.73)
Here & = the angular velocity of the rotation of the earth 2 = 727410 %ad/s 4; = 0.&d, and &, which has
dimensions of length, defined by

12

(Eﬁf) , @74

‘= l;

Eqgs. (4.73-4.74) are derived by solving (4.70-4.71) with (4.72) as a lower boundary condition and a sinusoidal

2
upper boundary condition (diurnal, with period = 7%

Tz=0,8) = T + Alsin]ize (4.75)

The solution of this system is, witj transients removed,

T2 = 7. + A~ Pun(t=z/8)] (4.76)

The relation for & [(4.73)] then follows. Eq. 4.76 shows that & is the "e-damping depth™ of a diurnal wave. The
damping depth also plays an important role in understanding the behavior of PROGTN's prediction equation.

The BB formula for dTs/dt results from eliminating & from the energy balance equation, thus yielding,
aly 802
E{I} = —rg + Q{TW-T:‘.'}- (4'??}

The net (positive upward) above-ground flux is denoted by #,

Note that Rnet is positive upward, as are FH,FQ.

In the absence (or cancellation) of the above-ground fluxes (‘forces'), the BB formula tends to ‘restore’ Ts to
the subsurface 7= with a (e-damping) time scale £-1. Hence, the BB relation is often referred to as the ‘force-
restore method'.

Simulation experiments suggest that the force-restore method - although derived form the stringent
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n
assumption that 9(z,t) is sinusoidal with a period %2 is surprisingly robust and versatile. Force-restore
predictions under varying physical conditions often compare favorably with the more accurate, but more
complicated and more time and memory consuming finite difference solutions that use many computational
levels within the subsurface.

Numerical experience also shows, however, that the force-restore method can also produce ‘solutions' that are
as unrealistic as the finite difference solutions computed in PROGTN that uses three predictive layers. One
likely reason for failure is the 'stiffness’ of the BB and PROGTN predictive differential equations that contain
multiple time-scales of substantial disparity (minutes versus hours) between the individual forcing and force-
restore terms. Stiffness is most acute for situations with strong sensible and (especially) latent heat fluxes. The
study of simple, low-order nonlinear finite difference equations also reveals solutions that are similar to the
strange solutions for Ts produced by PROGTN and by the BB methods: ‘transcritical’, 'flip’, and ‘fold'
bifurcatons (Holden, 1986). That is, the erratic behavior of the solutions is inherent in the nonlinearity of the
difference equations. Ill-behaved forecasts can also occur with highly insulating surfaces, that is, when 4; — 0

As noted, diagnostic energy balance and the predictive equations originate from the conservation of energy.
The conservation of energy can be expressed as a continuity equation for energy density,

Wy = =

£ CF = 4.7

s TV Fe =1 (4.75)

in which Pz is the energy density, and FE is the energy flux vector. FE is directed along the Z-axis and is

F=Hu T Fa+ Fpahove ground and =6(= # below ground. Accordingly, the ¥ - operator reduces to #/3Z.
If we integrate downward from the air-ground interface to a depth 4, we have,

4

A
a . Az p p
ﬁ J EIEF-"E = -JEEE:{FE = iFEI:E = |:|+j-EFE{3 = d} {48&)

n o+

in which 0+ denotes a point at a vanishing small distant above the interface. The first term in (4.80) is the rate
of change of (heat) energy in the sublayer 4. Denoting 1) as the mean f(&% ino = z = 4 at t, then we have,

001178 = Fglz = 07 )4F (2 = 4)
(4.81)

or

. _ _1 _
TiH = [a;c;d][ﬂ + Glz = 4}] (4.52)

The sublayer thickness 4 in PROGTN is 5 cm. Its representative (=average) temperature is taken as
714/2,2: T is defined in PROGTN to be Ts. Thus, the so-called interfacial temperature Ts is, in fact, a
subsurface temperature. PROGTN uses
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gy = =1 _ 4.8
7o) [ﬂ;c;d][ﬂﬂ + Gz = 4,0] (4.83)
for the "surface" temperature prediction equation. The approximation 7 = 7; is valid provided 4 = = & [see
(4.74)].
The diagnostic energy balance equation (4.72) is recovered if the limit 4 - o is taken in (4.79). In taking the
limit of
4
= lim2 |« 4,84
5 = dh_If,ljaz Jafmg (4.84)
n+

we assume that ££¢& 8 has, at most, a finite (jump) discontinuity at the interface; thus, S1=0. If, however,
e(% 1 has a delta-function discontinuity, then we have an interfacial energy source E=0*1] or sink [=5tz=0*1].

Photosynthesis is a physical example of a sink or storage term. Source and sink terms are not negligible, but,
with the exception of water phase changes, are beyond the scope of our consideration. We therefore assume
that, in the absence of phase change, S1=0 and, therefore,

ZMZ = HZ o+ 2. (4.98)

which is the diagnostic energy balance equation given by (4.72). Phase changes in the prediction equation for
Ts are not included explictly in (4.83) but are taken into account over snow, ice or water if the predicted
value of Ts exceeds or falls below the melting or freezing point.

F

Air i ;

Soil Z 7;(25¢m) Sem
- ¥ G2 - f

T, Z1=10etm

Ty 2z =50em

4 T T3, Zs=500em

Figure 4.1

In addition to the predictive equation for "surface" temperature, 7:, PROGTN carries two additional
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subsurface predictive equations for T-1 and T-2 at depths Z-1= 10 cm and Z-2= 50 cm. The lowest level
temperature at T-3(Z-3= 500 cm) is intended to be the lower boundary condition for the heat diffusion
solution of {Ts, T-1, T-2, T-3}. [nb.: we use the notation {T-3, Z-3} and {7 =Z =} almost interchangeably; we
also return to Z positive downward.] The geometry of the subsurface levels is shown in Fig. (4.1).

The finite-difference approximation for 94 = Gz = 4.2 js motivated by (4.71) and Fig. (4.1),

(Z =0 72) @8

Note in Fig. (4.1) that 94 is located at Z = 4 = 5 cm, but the midpoint between Ts and T-1 is Z=6.25 cm
hence, 94 is not an exact second-order difference approximation.

The semi-discrete approximations to T_17 207 3] are derived by letting T1 be the representative temperature
in the layer Z1A <Z < Z1B ; T-2 in layer Z2A < Z < Z2B; T-3 the lower, unperturbed boundary condition:
T-3 =7« = constant for Z > Z-3. The planes Z1A, Z1B, Z2A, Z2B are located at levels,

1
Zig= Z3aMZ = 5124+ Z ) 87
ZMZ = HZ o+ 2. (4.98)

The fluxes at these levels are given by

Fo = ﬂ""w= Gy, (4,89
(2.H7]
177
¥ = F = —ﬂ,;—, (4'9:')
A Y
Fon = _igw (4.91)
(Z5HE )

The rates of change of T-1, T-2, T-3 are

Bl ZypmZq|T 3 = Fral=Frq = Fip=l, (4.93)

OsC ZopmZza)T 2 = FrhFrq = F1p~al, (4.93)
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g @51)

These relations may also be written as

@7y K, [ F =T, ] (T_Q-T_l)'

= - (4.95)
dt "Lz A |2 472N =)

ﬂ _ i ( T_z-T_1)_( T gml ) 456)
et lﬂzﬁ_z_lj A B VAR ]

@1

S 4.9
T 0. (4.8%)

As in the case with the approximations for 44, in (4.92-4.94) are not exact centered differences.

To help keep the time-marched solutions for {Ts,T-1,T-2} numerically stable and well-behaved, the system

+ 1 +1 _
(4.83), (4.92-4.97) is integrated implicitely; therefore, a nonlinear term w{TF* kel = To(Z t, + 4D

is semi-linearized by

aN T”"‘l
{72 e+ (o) D) w
For example, the Boltzman term, a7* , becomes
4 3
o T = a(T* + Ao T TT™ (4,99

— dofTm T 37t

The CH,Q transfer coefficients are troublesome since there is no closed-form relationship involving Ts.
Computations show that transfer coefficients can vary sharply from tie step to time step. This can cause Ts to
become, while not numerically unstable, unphysically oscillatory: we call such solutions ‘fibrillations'.
Semilinearization, where practicable, is useful for holding fibrillations in check. FQ terms particularly need
semilinearization since they contain the surface saturation humidity, g*(Ts). For high Ts over the tropics,

q*(Ts) can change strongly from TiEolTF !, Thus, we have approximately,

+ * tg™(T
g (THH ] = (T + (77 =TT qd;g ) (4,100)

in which es is the saturation vapor pressure, mv, the 'molecular weight' of vapor
(18.016 g mol-1), and R is the gas constant (8.314 erg mol-1 k-1.

The time-difference relations for T1, T2 are

T?lz+1_Ti'1’f=- X, ?TH'T?H_T?H'TTH]
a1 HZmg)| (23) (220 |

(4.101)
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T51+1_T;-21+1 _ K, Taz+1_jr'r1z+1 T?3‘2+ 1_Trzz+1'|

- - - (4.102)
At HE=Z))| (Zo=Ly) (Z5=23) |

As noted, the spatial differences are offset by small distances and are not true centered differences. The
difference scheme for Ts is

Tr+iaFn
At

L {. g o C o] (T T ) + 28 (7 1)-@11)]}

o565 | (23]
+ 1 [T Y 4 5+ 7 |
| § 1 (4,103

Solar (shortwave) and downward longwave radiation are denoted by S and .

Although the finite difference relations above are cast in as implicit a form as possible, there are a few

inconsistences. The sensible heat flux term contains 7# **=T%1, since it is not yet possible to know 72*". In
essence, T +1 is assumed to remain constant from time step n to n+1. This means that atmospheric and
subsurface temperatures are not marched forward in time as a unit, but rather as two independent
atmospheric and soil subsystems. This compromise doubtless helps create patchy areas prone to numerical
irregularity, but such numerical problems can be largely reined in by time filtering. A holistic solution does not
appear to be worth the computational effort at this time.

The choice of merely three levels within the ground, although physically overly parsimonious, is
computationally a prudent choice; the soil subsystem reduces to the simple matrix system,
AyTitt+ B =2

Ay T+ BT+ Cpy T = D,
(4,104

BT+ CypTyt = s
The elements Aij over snow-free land are:
Al2 =
Al3 =
A2l =

A22 =
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A23 =
A3l =
A32 =
A33 =
D1=
D2 =
D3 =
The use of only three active soil levels allows a simple application of Cramer's rule for (Ts,T1,T2)n+1.:
Titl =
i+l _
?-'22+1 —

Despite the intuitive appeal and simplicity of this approach, we have found that it has several problems. The
first is the apparent irrelevance of the deep-soil boundary condition (7--) imposed at a depth of five meters.
The e-1 penetration depth of the diurnal wave (& = 8.5 cm) into the "universal” soil is a very small fraction of
the 500 cm depth of the lower boundary condition. Numerical experiments show that Z-2 = 50 cm becomes,
in fact, the effective lower (diurnal) boundary condition. This leaves two coupled ordinary differential
equations for Ts and T-1. It can be shown by numerical experiments and analysis that this 2x2 system is not
capable of faithfully reproducing even a simple diurnal sinuosidal surface temperature wave, given a
sinusoidal net ground flux.

The second difficulty, which requires time smoothing to control, is the sporadically labile surface temperature
forecast. When the unsmoothed temperature forecast become ill-behaved, Ts(t) does not exhibit the explosive
instability that is the signature of an unstable difference scheme. Rather, the Ts forecast begins smoothly and
reasonably, and then suddenly begins to oscillate - almost chaotically - producing unreasonable sensible and
latent heat fluxes. These unrealistic fluxes are a once a cause and effect of the prediction scheme's poor
behavior and are produced, in part, by the highly nonlinear dependence of the heat and moisture transfer
coefficients upon the static stability of the surface boundary layer. The energy transported by evaporation in
the model can easily (and falsely) overwhelm the incoming solar energy.

The first of these basic difficulties is a direct consequence of the number and placement of the soil levels, and
also the soil thermal properties which are assumed to be everywhere constant (: ‘universal' soil). The soil
properties are, in cgs units : soil density =e:=s = 1.5 gcm-3; specific heat = cs = 0.32 cal g-1 deg-1; heat
diffusivity =Ks=3.0x10-3 cm2s-1; volumetric heat capacity =#++= 0.48 cal deg-1cm-3. We can anticipate the
lack of influence of 7. upon by several means. First, we examine (4.96).

; i, ( T_z-T_1) ( T-:a-T_z)
To— o - (4.10)
’ %(E_S.Z 1) l L=t \og=i
We see that the time scale associated with heat transfer from level Z-3 to Z-2 is roughly given by time

~ L il . :
scale(3,2) " Z (222 &; 3.4x107sec=391 dy. Now let us assume {Z-2, T-2} is made the lower (diurnal)
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boundary condition with T-2 = 0. The time scale for the heat transfer from level Z2 to Z1 is is very

S j—' -1 £ . .
approximately time scale(2,1) ~ 2 224 (222157 * 34106 or 35 dy. Thus, the influence time scale for level

Z-3 from level Z-2 is about a year, while about a mobth is required for level Z-2 to influence Z-1. The choice
of T-3 is irrelevant.

Another approach that suggests the irrelevance of T-3 is to examine the analytical solution for the surface
temperature,

T e ¥ .
7,= (%) Jaw{z_rarw+ (i}ﬁ) sz*[r,{zuhmeap(%). (4.106)

] (]

We see that the surface temperature depends upon the history of the above-ground flux, , and the initial soil
temperature profile. We wish to determine the depth of the initial temperature that fails to influence the
surface temperature within a specified time. More concretely, if we ask: for what depth does the exponential
in (4.106) fall below, say, 0.01 for t = 30 dy, then find that Z = 378 cm. By contrast, we see by using the same
conservative criterion that a temperature at a depth Z = Z-2 = 50 cm is felt in only 12.6 hr. The selection of
T.. at Z..= 500 cm would appear to have only a modest effect upon a 30 day surface temperature forecast;
setting Z-.=50 cm would seem to be a more prudent choice. The irrelevance of T-3 is, therefore, not a simple
numerical fortuity created by the form of the finite difference scheme.

The second difficulty is the sporadically irregular behavior of the surface temperature in time. These
irregularities (‘fibrillations’) can also occur with the BB scheme and evidently arise when and the time scales
associated with the radiation, ground , and turbulent heat fluxes become widely disparate and range between
minutes to hours. When the flux time scales are all significantly longer than the time step used in marching Ts,
and strong fibrillationss generally do not appear and the integration proceeds smoothly.

The wide range of time scale of the turbulent fluxes of sensible and latent heat result from the nonlinearity of
CH(= CQ) and g*. The heat transfer coefficient CH varies sharply for relatively small deviations from
neutral; moreover, CH is strongly assymetric with respect to * F.ol . For unstable ., CH increases rapidly

Co ~ (R.-F)EIQ

compared to the newtral value and approaches in the free convection limit. (NB: the curent
version of PROGTN does not quite folow this power law; the diffusion process above the surface layer in the
MRF does). For stable F.s|, CH decreases rapidly to zero for Ri; = Big, Over hot, unstable, moist surface CH,
and g*(Ts), can become quite large and can cause an acute drop in Ts over the time interval :. This extreme
daytime temperature drop forces the MRF's SL to become strongly stable and begins to create cycles of
overshooting: stable, unstable, stable, etc. Periods of fibrillations are intermingled with period of calm.

A considerably smaller time step would allow Ts to ‘catch up’ with the air and ground temperature but t << 10
min is not practicable. Use of a time step in which 2¢/7 = 1KZ is the shortest of the time scales associated with
the sensible, latent, and ground heat fluxes) can greatly burden the finite difference scheme. Recall that the
finite difference scheme for Ts is given by (4.106). The time scale for the ground heat flux between Zs and
Z-1is

T, (B2 KA = #.2010%, (4,107

The  for the ground heat flux exceeds one hour and, accordingly, should be easily handled with the MRF's ¢
. The time scale =& IR of the long wave term is approximately

o D55 (4.108)

g ® g 10 Yer
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or about 10.3 hr. As expected, the long wave radiation poses no numerical problem. The turbulent terms are
quite a different matter. For the sensible heat flux term, we have,

Bl
tg~ 2 10%ec (4.109)

for CH = 10-2, while for the latent heat flux 2 * ¢ 1.9 min. For CQ = CH= 10-2, Ts = 400C and gs = 15
gkg-1. The transfer coefficient is typical of reasonably unstable conditions with Z0=0.1m. We see that the
time scales are both short and that we should expect computational irregularities. Even if there are no evident
fibrillations, forecasts over hot, moist regions are regarded with suspicion. Computational experience shows
that for %2 = 4% smooth spurious 'solutions' to the marching equation can be generated which bear little
relationship to the physical solution. Such spurious solutions may well be examples of the bifurction
phenomenon that commonly arises in the study of nonlinear difference equations. We cite two examples:

E = me? (4.114)
(4.122)
E = me? (4.114)
E = me? (4.114)
(4.123)

In both examples we shall assume that the point T = 0 is the ‘physical’ equilibrium point (equilibrium point
fixed point critical point Tn+1 = Tn). For (4.122), T = 0 is a stable solution provided -2 < A < 0. However,
there is a second equilibrium solution, Tn = Tn+1 = -A, that is a stable solution for 2 > A > 0. Thus, when the
physical solution becomes unstable, the iterations are attracted to the spurious solution. In the second
example, the physical solution becomes unstable for A > 0. When A > 0, a curious behavior begins: a 'flip'
bifurcation which creates '2-cycle' equilibrium points,

E = mg (4.114)
(4.124a)
£ = me? (4.114)
(4.124b)

which are stable if (1 - 2A)2 < 1/ An initial To near zero is repelled by T = 0 and attracted to T = + A, at
which points successive iterates flip sign [see Holden, 1986 for a fuller discussion of (4.124) and numerous of
her examples].

These examples show that the behavior of even relatively simple nonlinear differences schemes cannot be
satisfactorily explained in terms of linearlized schemes. For these reasons, the use of a carefully tested
smoothing technique is indispensable for the simulation of surface temperatures on a global model with
extensively varying surface conditions.

1. The Prediction of Surface Temperature in the Presence of Snow or Ice
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Snow or sea ice that is melting substantially changes the prediction of surface temperature. The modeling of
melting is one of the oldest portions of the MRF's surface physics; accordingly, melting is one of the most
simplistic portions of PROGTN. Some of the simplifying assumptions are:

1) Melting takes place only in an infinitesimally thin layer at the air-ground interface regardless of the
subsurface temperature; (2)Melting occurs only when the predicted Ts exceeds 273.16K for snow or 271.2K
for sea ice; (3)Meltwater is not allowed to percolate into snow and refreeze at a lower, colder depth with the
accompanying heat of fusion transfer and changed temperature at that level; (4)Meltwater percolates
immediately into the ground (without refreezing) where it increases the volumetric soil moisture content,
provided the ‘field capacity' is not exceeded; (5)If, during a given time step, all the snow cover is melted, then
any remaining heat goes into increasing Ts. Other subsurface temperatures are unchanged; (6) The water
depth of snow is 1/10 of the snow depth; (7)Sea ice meltwater puddles inertly on the surface of the sea ice;
(8)The subsurface heat flux through sea ice is inversely proportional to an assumed constant sea ice thickness
of 2 meters; and (9) Compaction of snow is not allowed.

These rather primitive and restrictive assumptions can perhaps be justified by appealing to the equally
primitive knowledge we have of snow cover, snow depth and sea ice cover, salinity and depth. Without
improved knowledge , there is little reason to upgrade the simulation of melting.

Consider now the following conditions: If the Ts prediction equation yields as predicted Ts that is lower than
the melting point of snow, then the computation continues uninterrupted. If, however, Ts >273.16K, then the
computation

E = mp? (4114
(4.125)
is replaced by

in which is the vector sum of the above-ground fluxes, is the subground heat flux just below the interface, and
is the heat of fusion of ice: 79.9 cal g-1. The quantity

is the energy per unit area per unit time that is devoted to melting snow, an isothermal process at 273.16K. If
is the heat of fusion, the is the 'material flux', so to speak, of the melted snow: mass per unit area per unit
time. The mass is, of course, the water mass which can be approximately converted to physical snow depth by
multiplying by the conversion factor of 10. The water-equivalent depth that is melted in time

t is t, assuming that all the snow is not melted during the time

t. If the snow is not completely melted, then the remaining snow depth (that is, the water equivalent depth) is,

E = met (4.114)
(4.126)

The new Ts 273.15K. If new is negative, that is, there is more heat energy available than is needed to melt the
snow, then the computation is again interrupted. We first write,

E = met (4.114)

(4.127)
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in which s is the mass flux required to melt the remaining snow during the time t. The associated energy flux
is Sold/ t. The remaining energy flux available is:

E =mt (4.114
(4.128)

This available energy is used to raise the temperature Ts of the interface slab or thickness ,

£ = me? (4.114)
(4.129)

Ts is the new (elevated) temperature. In the case of sea ice, we assume that sea ice is two meters thick
everywhere and that =2 m.

1. Evapotranspiration Over Land
1. Introduction

Since the recent studies of Walker and Rowntree (1977), Warrilow (1986), Shukla and Mintz (1982), Yeh et
al. (1984) and others, it is becoming apparent that numerical weather prediction (NWP) models are very
sensitive to the parameterization of the surface exchange processes at the atmosphere - land interface. The
development of the daytime planetary boundary layer (PBL) is strongly dependent upon the parameterized
surface sensible and latent heat fluxes. Convective precipitation over land is also sensitive to the soil -
moisture / surface - evaporation parameterization.

While the parameterization of the sensible heat flux in most models is of the simple bulk - aerodynamic form
based on the temperature difference between the soil surface and the lowest layer air, the parameterization of
latent heat transport is complicated by the degree of wetness of the soil and the presence of plants. Most of
the NWP models developed in the past utilized a simple "bucket™" method pioneered by Manabe (1969). In
this method there is a bucket at each grid point and evaporation is reduced from a "potential” value by the
ratio of soil water in the bucket (w) and a specified field capacity value (ws). In addition, the potential
evaporation is evaluated assuming that the soil is saturated at the model calculated "skin" temperature. It has
been pointed out by Dickinson (1983) that this method cannot realistically model the complex biosphere
processes.

Toward improvement of the biosphere parameterization, there are some fairly complicated models (e.g.
Dickinson, 1984; Sellers et al., 1986) that have been developed recently. Less complicated models such as
Pan and Mabhrt (19 87) still require several levels of soil moisture and a plant canopy. There is little doubt that
we need better understanding of the atmosphere - biosphere interactions. Interactive feedback from the
biosphere is probably as important as feedbacks from deep cumulus and from the ocean. The level of
complication needed to model this mechanism is, however, a decision that atmospheric modelers must make.
This type of question has been asked concern ing other feedback mechanisms as well. A notable example is
the choice of the cumulus parameterization schemes. A point against a complex biosphere parameterization
scheme is the lack of coordinated atmosphere - biosphere data to validate the many parameters in these
schemes. Such experiments as the Hydrological Atmospheric Pilot Experiments (HAPEX) and the
International Satellite Land - Surface Climatology Project (ISLSCP) experiments are only beginning to make
such data available and should help in the development of such models in the future.

For short- and medium- range weather forecasts, the benefit of a detailed biosphere model is not immediately
obvious. Surface evaporation interacts with radiation, clouds, and convection and, yet, each of these
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processes is currently only crudely parameterized. At the National Meteorological Center (NMC) in the
United States of America, we took the approach of a simple surface scheme at the level of complication
comparable to the other parameterization schemes in the present generation of models. The Penman -
Monteith method (hereafter referred to as PM) recently implemented in the medium - range forecast (MRF)
model follows the above philosophy and will be described below.

1. Method

In the simple bucket method (Manabe, 1969) formerly used in the MRF, latent heat flux from the land surface
is parameterized using bulk - aerodynamic formula :

E = met (4.3.1)

where is the soil moisture availability parameter,Ep is the potential evaporation, is the density of air in the
first model layer, L is the latent heat constant of vaporization, Ch is the turbulent exchange coefficient, V is
the wind speed of air in the first model layer, gs(Ts) is the saturation mixing ratio at the surface temperature
Ts (sometimes referred to as the skin temperature), and ga is the mixing ratio of air in the first model layer.
The factor, , is defined as the ratio between the soil moisture content (w) and the field capacity (ws) and has
value between 0 and 1. The key assumptions of this formulation in addition to the bulk - aerodynamic ex
change concept are:

1) the use of a single parameter, , to simulate the reduction of evaporation when the soil and the vegetation
are under stress, and 2) the use of saturation mixing ratio at the 'skin' temperature as the surface mixing ratio.

Even when the soil is wet, there still exist some stomatal resistance in the plants that will reduce the
evaporation from the potential value. When the soil is dry, the use of the surface temperature to estimate the
surface mixing ratio is too high and will result in an overestimation of the potential value. In both situations,
the simple bucket model will overestimate the actual evaporation. As pointed out by Mahrt and Ek (1984),
the potential evaporation should really be defined using a temperature different from the surface temperature;
a temperature that is compatible with the Penman formulation of the potential evaporation. The Penman
potential evaporation formulation can be further modified to include the effect of stomatal resistance for
vegetation and one can define a potential evapotranspiration following Monteith (1965). For the modeling of
soil water stress situation for the atmosphere - biosphere interface, we have decided to retain the framework
of the bucket model but modify it to overcome these weakness. We will describe the methodology in some
detail in the remainder of this section.

We will follow the work of Mahrt and Ek (1984) and define potential evaporation as the evaporation that can
be realized if the soil is completely wet given the same environmental conditions ,i.e., net radiative flux and
ground heat flux. The key point implicit in this definition is the existence of a different skin temperature under
the saturated soil condition ( see also Sud and Fennessy, 1981). By allowing the upward longwave radiative
flux t o depend upon the skin temperature, we can write the surface energy balance under the saturated soil
condition ( =1) as:

(4.131)

where the terms on the left-hand-side are, respectively, the net shortwave radiative flux ( is the albedo), the
downward longwave radiative flux, and the upward longwave radiative flux ( is the Boltzmann constant). The
terms on the right-hand-side of the equation are the ground heat flux, the sensible heat flux, and the latent
heat flux. In contrast, the actual surface energy balance is defined as follows:

(4.132)
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where the last term is obtained from Eq. (4.131). The difference in the skin temperature, Ts - Ts', can be
larger than 10 K when the soil is dry. In the original simple bucket method, we ignore this difference by using
Ts to calculate Ep and thus tend to overestimate the latent heat flux. As a result, there is strong moistening in
the lowest model layers during the first 12-24 hours of forecast. At the same time, temperature in the lower
layers of the model also tend to be lower during the daytime. This leads to an unrealistic Bowen ratio (the
ratio of the sensible and the latent heat fluxes) even over regions of fairly wet forest land (e.g. the Amazon
region). We interpret the latter as an additional problem of not parameterizing the presence of vegetation.

In EqQ. (4.131), the single unknown variable is the skin temperature Ts'. Mahrt and Ek (1984) rederived the
Penman potential evaporation formula starting from (4.131) (neglecting the effect of skin temperature on the
upward longwave radiative flux and the ground heat flux as done by Penman, 1948) to obtain

(4.133)

where Rnet is the net radiative fluxes,

and

Troen and Mahrt (1986) included the effect of the lower skin temperature in Rnet to obtain
(4.134)

where

To derive (4.133), the linearized form for gs(Ts'):

is used. It should be noted that there is a dependence of Ts in the ground heat flux. We are presently ignoring
this effect as it would significantly complicate the potential evaporation formulation. Monteith (1965) and
others suggested that, in the presence of plants, the stomatal resistance (rs) must be included. While we follow
the idea of a stomatal resistance, we will use a minimum stomatal resistance (defined as the resistance under
no water stress) to define a potential evapotranspiration. The unusually small predicted Bowen ratio over
tropical rain forest regions using the original bucket method suggests that we should include this effect. The
resulting potential evapotranspiration rate when we apply the additional stomatal resistance to the latent heat
flux in (2) is shown below:

(4.135)
Finally, the latent heat flux is now defined using the bucket concept as:
(4.136)

In this manner, the water stress in the stomate is parameterized in the same form as the bare soil simple
bucket method. The value of stomatal resistance under no water stress is currently set at 60 s m-1.
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LAYER'S MONIN-OBUKHOV
FORMULATIONS OF MOMENTUM, HEAT,
AND MOISTURE FLUX

1. INTRODUCTION

The equations and their solution for the surface layer of the boundary layer have been changed in several
ways. The most extensive change has been the elimination of the iterative solutions for the Obukhov length,
L. Additional changes include the recognition of a "rough sub-layer”, Z*, and also to changes in the
formulations that apply to strongly stable and unstable bulk Richardson number, RB. For the stable case, the
restriction that the bulk Richardson not exceed a “critical” Richardson number has been removed. For the
unstable case, a restriction has been placed upon \Zo/L\.. That is, \L\ is not permitted to approach Zo.
Ignoring this restriction can result in unrealistic upward sensible heat fluxes that exceed by several times the
solar content. We shall consider the stable case first. [N. B.: the notation used in this appendix conforms to
the notation used in the main body of the text].

1. THE STABLE REGIME

(@) Monin-Obukhov functions FM,H (z = Z/L) that are linear for either all z > 0 (or for all sufficiently large z)
yield critical Richardson numbers. That is, R --> RC for z --> + =. As the critical number is approached,
FM,H,Q vanish. For example if we take FM,H to be

Fanill = Opapll + o g0 (4,115

where =M, H and bM, H are constants, then the critical gradient Richardson number is given by

Bo= oy fpf{epat (4115

The critical Richardson number for the profile relations in the MRF is 1.32. This is about 6-7 times higher
than the RC for the Dyer (1974) or for the commonly used Businger et al. (1971) profile relations. It is likely,
however, that even RC = 1.32 is too low. When R equals or exceeds, RC, there is no downward heat flux.
The main consequence of a low RC is that too much of the upward daytime heat flux is trapped in the
boundary layer and cannot return during stable nocturnal conditions. A relaxation of the RC is needed to
enhance the downward flux.

The lack of a precise knowledge of the stable boundary layer's profile laws permits some constructive
tampering, even to the extent of eliminating (moving to +=) the critical Richardson number. This should not
be interpreted as a denial of the existence of RC (probably ~0.20) at a single point, but rather the recognition
that an area average of the nocturnal boundary layer includes portions of small, patchy turbulent eddies
mixed with gravity waves. Flux leakage is realistic and reasonable.

(b) In this section we examine a simple formulation for FM, H that exhibits neither a critical gradient nor a
critical bulk Richardson number. In addition, the formulation does not require dividing z into separate weakly,
mildly, and strongly stable regimes.

The formulation is motivated by the turbulent diffusion equations for R o that the MRF uses above the
surface layer,
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- t2|aﬁg-|{1 + praplR) e, (4.11%)

To make this relation compatible with the surface layer, we note the following surface layer relations,

_ :_ _ -z afl :

Fou=—oui=— o(kinsy (EZ') . (4.118)
- - -0 2k 4,11
Fp= — oudbe= — a0 488 ) S ir (4119
Fo= = oge = — oL{kE(E 3] STEE, (4.120)

As usual, FH = FQ. For mildly stable cases, experimental evidence suggests FM = FH. For increasing stability,
it is possible that FM and FH begin to differ, but we will not deal with this possibility at this time. We shall
assume that FM = FH for all positive z.

Egs. (4.123) - (4.125) can also be written in 'K-theory' form:

Fu=— oKy 2o (4.121)
Fa= — 0Cy 3 (4.122)
ag

Fo=— oLl o (4.123)
where

Eu= (08725 (4.124)
K = (hnis 0 o 2l (4,128)
Ko = (im0 o2 (4.126)

follow by comparison of (4.121) - (4.123) with (4.124) - (4.126). These diffusion coefficients can be related

to (3) provided that in the surface layer we have: the (neutral) mixing length: 1 = kz; the wind shear: Ia%‘ =I§—§
; the stability function:

Py= 14« k. (4127

since the connecting relation between zand R is

g
i nd (4.128)

the 'universal' functions FM, H are simply

33 0f 42 10/22/2010 1:18 PM



http://www.emc.ncep.noaa.gov/gmb/wd23ja/doc/web2/chap4pc.html

3 496 fally "
iﬁ'm=iﬁ'M4=1+¢R=1+°‘ﬁa—z‘(3—Z-) i (4.12%

this means that

E= {1+ = BIE (4.130)
or

o iﬂ_ dl+d et (4.131)
and

Fav= 1+ TFE =L, (4.132)

For small values of z (weak stability), we have the standard linear results

Ex F (4,133
Fapx l+afal+ei (4,134

but for large , z we have

fo (4.135)
Ppu~ (= DE== & (4.136)

Egs. 4.140 - 4.141 mean that for strongly stable conditions the fluxes of momentum and heat are nonzero and

are given by
ru~ = )] @137
-2 () (4130

As %32 s increased, the fluxes decrease.

(c) In this section we show how z can be estimated from the bulk Richardson number, RB, without iteration.
We first use the equation that relates z to RB,

e
= ﬁﬁ'ﬂl (4,139
in which

3 R
Be = feioe (4.140)
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=}
Fru = J S LR (4.141)
Z

From (4.132), we have,

(J1+4~==:—1)(J1+4~=:§.+1)

Fy = Fp= i = T+ ai-JT+of +in (414
?(37)+"r+ ottty (J1+4m§+1)|:J1+4x§.—1)l ¢4
since FM, H is conventionally written in the form

A 4,14
Fun = [ £] = PunlZILAZ, LI 4143
we must change the form of (4.142). The result is
B(EJLYE L = m(llTJf;’-) +e- 2, (4.144)
in which
P=JT+d =il 0% =JT+ 2% =0l {4,145
Another standard form for (4.143) is
Fow = In g__— U d B/ + Paal 0L (3.145)
in which
g = fm P (4.147)
W =1+ P —F+ 1 -2 (4.148)

Now, some manipulation shows that FM,H can be approximated for == 5 by,

Fp~ tnzz—— %—tn 42458+ 0, (4.149)
=42l = AT+ - 25— 1+ w2 = — 1316 (4,150

In addition, we can roughly approximate z by

B~ [m(zzj) + zJ§§§+ 61]&-3 (4.151)

which leads to the quadratic equation
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¥ — 2w R — Caftg = 0 (4.152)
in which
f1= Kl G = Clln FA. (4.153)

The physical correct solution to (4.152) is

o = = Bp+ o Bi+ Ctp (4.158)

The solution for z can be divided into two portions. Numerical computations show that z can be adequately
approximated by

Ea= EphnlZ/Z M0t £\ = 0.250 (4.155)

Substitution of the approximate value of &= &¥) into (4.144) leads to momentum and heat transfer,
coefficients CM, H that differ only slightly from the ‘exact’ values. For ¥ = 0.25, the approximation § = ¥
should not be used and should be replaced instead by ¢ = &1l where is given by (4.153) - (4.154). As with
&N, &1 should be substituted (4.144) in order to approximate FM, H which then leads to the transfer
coefficients,

o = EHE WF sl (4.156)

1. The Unstable Regime

(a) As noted in the main body of the text, most of the relations for the unstable case (z<0) that have been
used in numerical forecast or simulation models are of the form

Fanlll = Quall — o ) 700 (4157

where aM, H, M, H and pM, H are positive constants. Some examples are: (A) Businger et al. (1971), {aM, &
M and pM} = {1, 15, 1/4}; {aH, ¢H and pH} = {0.74, 9, 1/2}; (B) Dyer (1967) aM=aH=1, {M,H=15,
pM=0.275, pH=0.55; (C) Carl et al. (1973), {aM, M and pM} = {1, 16, 1/3}; {aH, ¢H and pH} = {.74, 16,
1/4}. The MRF physics formulation uses the results of Dyer (1974) and Hicks (1976):

Pl = (1 — 1607 (4.158)

Byl = (1 16077, (4.159)

(b) In this section we show how (4.157) can be used to compute FM, H = In (Z/Zo) - YM, H (z,z0) = In(Z/Z0)
-YM, H+ YM, H (zo). When - zo is small, then (4.160) can be approximated by

Fuw = 10 5= Dol (4.160)
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as it commonly done. Now, for 0 =-z = 0.5, YM, H (z) can be approximated by
@ B : a::ﬂl (4.161)
To determine a0, al, b1, (4.161) is expanded:

Vo= gy + uf){1 + M5~ = af + (23— 2dd T + (2ed] — ad EF + 0(ED (4.162)

Also, we have,

Z

P, = E.Tuj %311[1 — PAZYLY] = — 4F — 20 + NEI (4,163

2

By equating a0=-4, al-a0 b1 =-20 and requiring YM, (-z=0.5) = 0.7934, we get
— 4 + 5.140¢

Cu= Topomr (4.164)

for -¢ =0.5. Additional accuracy can be achieved by forcing collocation at -z=0, 0.05, 0.10, 0.25, and 0.50:

— 3975+ 1232
R e (4165)

Similar calculations for FH give,

V)= Tt (4.166)
and

— 71+ 2T
%= o Ty (4167

We now consider the more difficult general problem of determining YM, H from YM, H = (1-¥z ) -p. The task
is tedious, but the asymptotic result, Eq. 4.195 is fairly simple. As -z increases, the accuracy of YM, H
increases.

We first express Y as

2 o o
= m + J‘%Z;h — (1= 424117 = m + U - ”[1— {1+ ﬁ-i‘]‘%ﬁ_ (4,168

2, % *

in which x = - ¥Z/L.. We also express (4.168) as Y(x) = 11 (x0)-12(x)
— im [h’m f - ?2] (4,165)

et | gyl
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in which
H
ipy = J‘%‘i{l — {14y (4.170)
E
and
P
Ty = J%{l — {1+ x4 (4.171)

Integral 11 can be broken up into Ja and Jb:

l- H
Ei=|.'l.1+|.'l¢.=li.mlimJﬂ‘x‘(%-—%ﬁ)+ﬁmﬁmJ[ﬂ%$+x_ﬁ-] (4.172)

[ | Tkt g =00

The second term in J a is the exponential integral defined by (Arfken, 1985)

&

Eyu) = J £t (4,173

&

and given by the series expansion

B = —f—bu+ 3 (4.174)
for which ¥is the Eulaer-Masheroni constant,

i= Ell[(l +iele 4 }r) - tmz] = 05772156650 (4.175)
Substitution of (4.174) - (4.175) into (4.172) yields

= tom e/ + 5+ g = bm e + i (4.176)

We are left with a logarithmic divergence in Ja, but this will be shown to cancel with another term.

We now examine Jb by noting that an integral representation of the logarithm of the gamma function G(t) can
be written as

%

b Fra = J .:z‘z'|:|:u = IJE_; _ E.El_:__::::] (4170

[

The integral can be differentiated to get
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which, of course, is the same as [1/G(u)] [dG(u)/du], the definition of the Euler 'digamma’ or 'psi’ function

(Gradshteyn and Ryzhik, 1965),

i i =i -
Pt = Fro= “Ez'__ 11?——&-—]‘&’
n

We can change variable in the second term of Jb:

¥=e-—1

to get

13

“ﬂ'i'f —s g
J e J [
n

]

and, therefore,

b, = Pela) = J [E:EE]E“'

]

Values of the digamma function have been tabulated. Some values that are of interest to us are:

:pf(%) = —§—-2h2 - 19635

wf(;}—)= —§-T-imz= —422m

wf(%) = —i- g'v@_ %m = — 313200

It remains to evaluate 12. We write

5

= j rf;[l i ;)"’]
K3

ol - -i- 5/ pos - -ssum

(4,179

(4.180)

(4.181)

(4.182)

(4.183)

(4,184

(4,185)

(4,186)

(4.185)
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i)

%= J %[1 i1 31,)_"] (4.186)

x

in which S (s;p) is the series

alp — 1
Stset = Qo = g — SO s (4.187)

For FM (Z/L) with p= 1/4 and FH (Z/L) with p=1/2, we get

Sig 14y = g = Ly Ly (4.189)
and
St /2 = 3y — LR+ e g (4.189)

The presence of In r in z cancels the divergence in Ja. The final result is obligingly compact:

Wy = Iy + Fipel + i+ Pelelll (4.190)

When (4.190) is applied to FM and FH, we get

Pyl ~ DATIES + Inf— b+ 2— - do—psy 1’2,_128%'(_ AL | (4.191)
@y@ ~ 13863 + (= £ + 1/2(— 87 — gp(— 87+ grler(— 57 4+ L (4.192)

We need to retain only the (-z) -1/4 and (-z) -1/2 terms for -z>0.5 to achieve an adequate accuracy of 1.8% or
greater. As expected, as -z increases, the accuracy increases.

(c) In this section, we delve into the physical and computational difficulties that arise when h is not many
times larger than Z0 and when |L|->Z0. These conditions are not normally encountered in field conditions
whose goal is to measure FM, H (Z/L), but large Z0 and small |[L| must be expected to occur fairly frequently
in global modeling and must be dealt with.

We deal with the problem of Zo~O(h) first. It is not expected that the logarithmic wind law is valid for Z ~Zo.
Tennekes (1973) has suggested that the region for validity is Z> 10-100 Zo. Following Garratt (1980), we
denote by Z* the lowest Z for which the profile laws are approximately valid for neutral and unstable lapse
rates. The region Z<Z* is Garratt's 'roughness sublayer".

At heights lower than Z* the individual roughness elements can be 'sensed’ as the result of turbulent wakes
created by flow around individual elements. This violates the similarity conditions by introducing an
additional length scale, Z*, into the conventional profiles laws, FM, H. Garratt's analysis of data from very
rough terrain suggests that Z* = 35 Zo for momentum and that Z* =~ 100 Zo for heat. This means that if the
largest roughness lengths in the MRF are say, Zo =5m, then the standard profile laws do not apply to heights
below =175m for momentum and 500m for heat. These depths are as great as or greater than the heights of
the surface layers of most NWP models.
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In our calculations, we shall take a more liberal approach and merely require h>10 Zo. For points where
Z0>h/10 for the FM, H calculations.

We now deal with the second question. The Businger-Hicks profile laws are regarded as reasonably accurate
for -z<3. Model computations, however, can significantly exceed this moderate limitation.

Numerical calculations have uncovered another difficulty. Consider the following situation: Z»4&.4g.and h
are held constant as U(h) increases -RB and -z. This decreases FH and FM, which, in turn, increases CH.
Under normal conditions (that is, |L| >>Z0), the decrease in U(h) overcomes the increase in CH, and the
surface heat flux decreases. For very large Zo and small |L|, there is an anomaly: As U(h) decreases, the heat
flux decreases, reaches a plausible minimum, and then increases. Eventually, heat flux that equal and exceed
by several times the solar constant can be (mathematically) reached. This is counter-intuitive.

These 'runaway' heat fluxes can be eliminated by noting the following pattern that begins to emerge after
observing the behavior of FH for many examples: Although the examples do not seem to indicate a minimum
-u* Q* for any particular value of U(h), RB, h, or a minimum occurs when

wid, = | & (4.193)

for m=20-50. To help eliminate the problem of runaway heat and humidity fluxes, we choose

mat| 2,000 = 1450 (4.194

This choice has the added advantage of allowing us to neglect Y(Zo/L) compared to Y(Z/L). This means that
YM,H (Z/L; Zo/L) can be accurately approximated by YM, H.

To achieve the restriction imposed by (4.194), U(h) is increased in
B = Bsl(R/E,). (4.195)

That is, we require

By = max (2 Eia) (4.196)

fiei = ¢— 50 %Z,d?étn BT (4.197)

for the CM,H,Q and flux calculations. Once these quantities are computed, U(h) is returned to its original
value.
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